THE FAILURE OF THE SINGULAR CARDINAL HYPOTHESIS AND SCALES

DIMA SINAPOVA

ABSTRACT. Starting from a supercompact cardinal κ , we build a model, in which κ is singular string limit, the singular cardinal hypothesis fails at κ and there are no very good scales at κ . Moreover there is a bad scale at κ , and so weak square fails.

1. INTRODUCTION

The Singular Cardinal Problem is the problem to find a complete set of rules for the behavior of the operation $\kappa \mapsto 2^{\kappa}$ for singular cardinals κ . One central theme is how much "reflection-type" properties are consistent with the failure of the *singular cardinal hypothesis* (SCH). SCH states that if κ is singular and $2^{cf(\kappa)} < \kappa$, then $\kappa^{cf(\kappa)} = \kappa^+$. In particular, if κ is strong limit singular, then $2^{\kappa} = \kappa^+$.

Scales are a central concept in PCF theory. Given a singular cardinal $\kappa = \sup_n \kappa_n$, where each κ_n is regular, a scale of length κ^+ is a sequence of functions $\langle f_\alpha \mid \alpha < \kappa^+ \rangle$ in $\prod_n \kappa_n$ that is increasing and cofinal with respect to the eventual domination ordering. A point $\alpha < \kappa^+$ with $cf(\alpha) > \omega$ is good if there is an unbounded $A \subset \alpha$ such that $\{f_\beta(n) \mid \beta \in A\}$ is strictly increasing for all large n. If A is a club in α , then α is very good. A scale is good, resp. very good, if on a club every point of uncountable cofinality is good, resp. very good. A scale is bad if it is not good.

Very good scales follow from intermediate square principles, and in turn imply failure of simultaneous stationary reflection (Cummings-Foreman-Magidor, [2]). Thus the non existence of a very good scale is a "reflection-type" property, and it has been open whether it is consistent with the failure of SCH at a singular strong limit cardinal.

Extender based forcing, developed by Gitik and Magidor [5], violates SCH at a singular cardinal κ while keeping GCH below κ . The set up is to start with a singular κ , such that $\kappa = \sup_n \kappa_n$, each κ_n is a strong cardinal, and then force to add many sequences though κ , but without adding bounded subsets at κ . In his Ph.D. thesis [7], Assaf Sharon modified this forcing to construct a model, where SCH fails at κ and there are no very good scales at κ . In his model, however, bounded subsets of κ are added, and κ is no longer strong limit. More precisely, only κ_0 remains (regular) strong limit.

Another way to violate SCH is via Magidor's supercompact Prikry forcings, [6]. An important variation is Gitik-Sharon's diagonal supercompact Prikry, [4]. In [8], we defined a forcing notion, called *hybrid Prikry*, which combines the diagonal supercompact forcing from Gitik-Sharon [4] and the original extender based forcing. This poset simultaneously singularizes all cardinals in the interval $[\kappa, \kappa^{+\omega})$, for a large cardinal κ , and uses extenders to add many Prikry sequences to $\prod_n \kappa$, so that SCH is violated. Here we define a *modified hybrid Prikry forcing*, combining ideas from [8] and the modified extender based forcing

Mathematics Subject Classification: 03E04, 03E05, 03E35, 03E55.

Keywords: singular cardinal hypothesis, scales, prikry type forcing, supercompact cardinals.

from Assaf Sharon's thesis, [7]. We use it to obtain the consistency of not SCH and no very good scale at a singular strong limit.

Our main forcing does not add bounded subsets of κ , thereby keeping it strong limit. However, before the main forcing, we need some Laver type preparation, to achieve no very good scales. Thus we can't quite keep GCH below κ , but we do have GCH at every inaccessible $\alpha < \kappa$.

Theorem 1.1. Starting from a supercompact, it is consistent that SCH fails at a strong limit κ , and there is no very good scale at κ .

In our forcing extension, there is also a bad scale:

Theorem 1.2. Starting from a supercompact, it is consistent that SCH fails at a strong limit κ , there is a bad scale at κ and for all inaccessible cardinals $\alpha < \kappa$, $2^{\alpha} = \alpha^{+}$.

The existence of a bad scale implies that weak square fails in our model. The failure of SCH together with a bad scale was already achieved in [4] at \aleph_{ω^2} . However, there is no natural way to modify their forcing for \aleph_{ω} . Our construction gives a different strategy, leaving the possibility of pushing it down to \aleph_{ω} open.

A key difference between the original extender based forcing and Assaf Sharon's version is that in the latter case forcing with the direct extension order preserves κ^+ . Similarly, starting from a supercompact κ , we will define a Prikry type forcing $(\mathbb{P}, \leq, \leq^*)$ with the key feature that both (\mathbb{P}, \leq) and (\mathbb{P}, \leq^*) preserve μ , where $\mu := (\kappa^+)^{V^{\mathbb{P}}}$.

In section 2 we define the forcing. Preservation of μ is shown in section 3, and the Prikry lemma is given in section 4. In section 5, we show that SCH fails in the generic extension. Section 6 has the proof that there is no very good scale in the generic extension, and in section 7 we define a bad scale.

2. The forcing

Suppose that GCH holds; let κ be supercompact, and let $\langle \kappa_n \mid n < \omega \rangle$ be an increasing sequence of strong cardinals above κ . Denote $\kappa_\omega = \sup_n \kappa_n$, $\mu := \kappa_\omega^+$. For each $n < \omega$, let U_n be a normal measure on $\mathcal{P}_{\kappa}(\kappa_n)$, and let $j_n := j_{U_n}$.

Suppose also that $Ult_{U_n} \models \kappa_n$ is $j_n(\mu^+)$ -strong. So for a U_n - measure one set of x's in $\mathcal{P}_{\kappa}(\kappa_n), \kappa_x^n := o.t.(x)$ is a μ^+ - strong cardinal. Say this is witnessed by $j_x : V \to M_x$.

Let $x \in \mathcal{P}_{\kappa}(\kappa_n)$ be as above. Let $\langle E_{x\alpha} \mid \alpha < \mu^+ \rangle$ be κ_x^n complete ultrafilters on κ_x^n , where $E_{x\alpha} = \{Z \subset \kappa_x^n \mid \alpha \in j_x(Z)\}$. Arguing as in [3] we define a strengthening of the Rudin-Keisler order: for $\alpha, \beta < \mu^+$, set $\alpha \leq_{E_x} \beta$ if $\alpha \leq \beta$ and there is a function $f : \kappa_x^n \to \kappa_x^n$, such that $j_x(f)(\beta) = \alpha$. For $\alpha \leq_{E_x} \beta$, fix projections $\pi_{\beta\alpha} : \kappa_x^n \to \kappa_x^n$ to witness this ordering, setting $\pi_{\alpha,\alpha}$ to be the identity. We do this as in Section 2 of [3] with respect to κ_x^n , so that we have:

- (1) $j_x \pi_{\beta \alpha}(\beta) = \alpha$.
- (2) For all $a \subset \mu^+$ with $|a| < \kappa_x^n$, there are unboundedly many $\beta < \mu^+$, such that $\alpha <_{E_x} \beta$ for all $\alpha \in a$.
- (3) For $\alpha < \beta \leq \gamma$, if $\alpha \leq E_x \gamma$ and $\beta \leq E_x \gamma$, then $\{\nu < \kappa_x^n \mid \pi_{\gamma,\alpha}(\nu) < \pi_{\gamma,\beta}(\nu)\} \in E_{x\gamma}$.
- (4) If $\{\alpha_i \mid i < \tau\} \subset \alpha < \mu^+$ with $\tau < \kappa$, are such that for all $i < \tau$, $\alpha_i <_{E_x} \alpha$, then there is $A \in E_{x\alpha}$, such that for all $\nu \in A$, for all $i, j < \tau$, if $\alpha_i \leq_{E_x} \alpha_j$, then $\pi_{\alpha,\alpha_i}(\nu) = \pi_{\alpha_j,\alpha_i}(\pi_{\alpha,\alpha_j}(\nu))$.

2.1. The modules.

Definition 2.1. The poset $\mathbb{Q}_x^n = \mathbb{Q}_{x0}^n \cup \mathbb{Q}_{x1}$ is defined as follows: $\mathbb{Q}_{x1}^n = \{f : \mu^+ \rightharpoonup \kappa_x^n \mid |f| \le \kappa_x^n\}$ and \le_{x1} is the usual ordering. \mathbb{Q}_{x0}^n has conditions of the form $p = \langle a, A, f \rangle$ such that:

- $a \subset \mu^+$, $|a| < \kappa_x^n$, for all $\beta \in a$, $\beta \leq_{E_x} \max(a)$,
- $f \in \mathbb{Q}_{x1}^n$, and $a \cap \operatorname{dom}(f) = \emptyset$
- $A \in E_{x \max a}$,
- for all $\alpha \leq \beta \leq_{E_x} \gamma$ in a, for all $\nu \in \pi_{\max a, \gamma}$ "A, $\pi_{\gamma, \alpha}(\nu) = \pi_{\beta, \alpha}(\pi_{\gamma, \beta}(\nu))$.
- for all $\alpha < \beta$ in a, for all $\nu \in A$, $\pi_{\max a,\alpha}(\nu) < \pi_{\max a,\beta}(\nu)$

 $\langle b, B, g \rangle \leq_{x0} \langle a, A, f \rangle$ if:

- (1) $b \supset a$,
- (2) $\pi_{\max b \max a} "B \subset A$,
- (3) $g \supset f$.

Define $\leq_x^* = \leq_{x0} \cup \leq_{x1}$ and for $p, q \in \mathbb{Q}_x^n$, $p \leq_x q$, if $p \leq_x^* q$ or $p \in \mathbb{Q}_{x1}^n$, $q = \langle a, A, f \rangle \in \mathbb{Q}_{x0}^n$ and

- (1) $p \supset f, a \subset \operatorname{dom}(p)$
- (2) $p(\max a) \in A$
- (3) for all $\beta \in a$, $p(\beta) = \pi_{\max a,\beta}(p(\max a))$.

Definition 2.2. For a condition $p = \langle a, A, f \rangle \in \mathbb{Q}_{x0}^n$ and $\nu \in A$, let $p \frown \nu = f \cup \{\langle \beta, \pi_{\max a, \beta}(\nu) \rangle \mid \beta \in a\}$. I.e. $p \frown \nu$ is the weakest extension of p in \mathbb{Q}_{x1}^n with ν in its range.

Note that if $g \in \mathbb{Q}_{x1}^n$, with $g \leq p$, there is a unique $\nu \in A$ such that $g \leq p \cap \nu$ (take $\nu = g(\max a)$).

Finally, for $n < \omega$, denote

$$\mathbb{Q}_0^n := [x \mapsto \mathbb{Q}_{x0}^n]_{U_n}, \mathbb{Q}_1^n := [x \mapsto \mathbb{Q}_{x1}^n]_{U_n}, \text{ and } \mathbb{Q}^n := [x \mapsto \mathbb{Q}_x^n]_{U_n}.$$

Since each \mathbb{Q}_{x0}^n is κ_x^n -closed, we have that \mathbb{Q}_0^n is κ_n -closed. Also, for each $\alpha = [x \mapsto \alpha_x]_{U_n} < j_n(\mu^+)$, set $E_{n\alpha} = [x \mapsto E_{x\alpha_x}]_{U_n}$. \mathbb{Q}^n is the extender based module over κ_n with respect to $\langle E_{n\alpha} \mid \alpha < j_n(\mu^+) \rangle$ and Cohen parts of size less than or equal to κ_n .

2.2. The main forcing. For $x, y \in \mathcal{P}_{\kappa}(\kappa_{\omega})$, we will denote $\kappa_x = \kappa \cap x$ and use the notation $x \prec y$ to mean $x \subset y$ and $o.t.(x) < \kappa_y$. Since on a measure one set, κ_x is an inaccessible cardinal, we assume this is always the case. Similarly, for each k, on a measure one set, for $x \in \mathcal{P}_{\kappa}(\kappa_k)$, $\kappa_x^k = o.t.(x)$ is strong. So we assume this is always the case, too.

Definition 2.3. Suppose we have sets $A_i \in U_i$, $B_i \in [x \mapsto E_{x,\alpha_x}]_{U_i}$ where each $\alpha_x \in \mu^+$. Let $[\prod_{i>l} A_i \times B_i]^{<\omega}$ denote the set of all finite sequences $\langle \vec{x}, \vec{\nu} \rangle$, where for some n,

- (1) $\vec{x} = \langle x_l, ..., x_n \rangle$, is such that each $x_i \in A_i$ and $x_l \prec x_{l+1} \prec ... \prec x_n$,
- (2) $\vec{\nu} = \langle \nu_l, ..., \nu_n \rangle$, is increasing and such that each $\nu_i \in B_i$,
- (3) each $\nu_i \in x_i$.

For every $i, B_i \in [x \mapsto E_{x,\alpha_x}]_{U_i}$, and $\nu \in B_i$ as above, fix representative functions $x \mapsto \nu_x$, such that $\nu := [x \mapsto \nu_x]_{U_i}$.

Definition 2.4. Conditions in \mathbb{P} are of the form

$$p = \langle x_0, f_0, \dots, x_{l-1}, f_{l-1}, A_l, F_l, A_{l+1}, F_{l+1}, \dots \rangle$$

where l = lh(p) and:

- (1) For $n < l, x_n \in \mathcal{P}_{\kappa}(\kappa_n)$, and for $i < n, x_i \prec x_n$,
- (2) For $n \ge l$, $A_n \in U_n$, and $x_{l-1} \prec y$ for all $y \in A_l$.
- (3) For $n \ge l$, dom $(F_n) = A_n$, and for $y \in A_n$, $F_n(y) = \langle a_n(y), A_n(y), f_n(y) \rangle$, where $a_n(y) \in [\mu^+]^{<\kappa_y^n}$, $A_n(y) \in E_{y,\max(a_n(y))}$. Denote $B_n := [y \mapsto A_n(y)]_{U_n}$.
- (4) For n < l, dom $(f_n) = \mathcal{P}_{\kappa}(\kappa_n)$, for every $x \in \mathcal{P}_{\kappa}(\kappa_n)$,

$$f_n(x): [\prod_{i\geq l} A_i \times B_i]^{<\omega} \cap \{\langle \vec{z}, \vec{\nu} \rangle \mid x \prec \vec{z}\} \to \mathbb{Q}_{x1}^n,$$

and for $\langle \vec{z}, \vec{\nu} \rangle \subset \langle \vec{z'}, \vec{\nu'} \rangle$, $f_n(x)(\langle \vec{z'}, \vec{\nu'} \rangle) \leq f_n(x)(\langle \vec{z}, \vec{\nu} \rangle)$. (5) For $n \geq l$, $F_n(y) = \langle a_n(y), A_n(y), f_n(y) \rangle$, such that:

(a) dom $(f_n(y)) = [\prod_{i>n} A_i \times B_i]^{<\omega} \cap \{\langle \vec{z}, \vec{\nu} \rangle \mid y \prec \vec{z}\}$ and for each $\langle \vec{z}, \vec{\nu} \rangle \in dom(f_n(y)),$

$$\langle a_n(y), A_n(y), f_n(y)(\langle \vec{z}, \vec{\nu} \rangle) \rangle \in \mathbb{Q}_{y0}^n,$$

(b) if
$$\langle \vec{z}, \vec{\nu} \rangle \subset \langle \vec{z'}, \vec{\nu'} \rangle$$
, $f_n(y)(\langle \vec{z'}, \vec{\nu'} \rangle) \leq f_n(y)(\langle \vec{z}, \vec{\nu} \rangle)$.
(6) For $l \leq n < m, y \in A_n, y' \in A_m, y \prec y'$, we have $a_n(y) \subset a_m(y')$

For a condition p as above we will use $f_n^p, x_n^p, n < \ln(p)$ and $A_n^p, B_n^p, F_n^p, F_n^p(y) = \langle a_n^p(y), A_n^p(y), f_n^p(y) \rangle, n \ge \ln(p)$ to denote its components as defined above. Also for $n \ge \ln(p)$, let $\beta_n^p := [x \mapsto \max(a_n^p(x))]_{U_n}$.

We say that $q \leq^* p$ if $\ln(q) = \ln(p) = l$, and

- (1) for all $n < l, x_n^q = x_n^p$ and for $n \ge l, A_n^q \subset A_n^p$,
- (2) for all $n \ge l, y \in A_n^q, a_n^q(y) \supset a_n^p(y), \pi_{\max(a_n^q(y), a_n^p(y))}^n A_n^q(y) \subset A_n^p(y).$

For $n \ge l$ and $\vec{\nu} \in \prod_{n \le i \le k} B_i^p$, denote $\pi(\vec{\nu}) = \langle \pi_{\beta_n^q, \beta_n^p}(\nu_n), ..., \pi_{\beta_k^q, \beta_k^p}(\nu_k) \rangle$.

- (3) for all $n < l, \forall_{U_n} x$, for all $\langle \vec{z}, \vec{\nu} \rangle \in \operatorname{dom}(f_n^q(x)), f_n^q(x)(\langle \vec{z}, \vec{\nu} \rangle) \leq_{\mathbb{Q}_{n_1}^n} f_n^p(x)(\langle \vec{z}, \pi(\vec{\nu}) \rangle),$
- (4) for all $n \ge l, y \in A_n^q$ and $\langle \vec{z}, \vec{\nu} \rangle \in \operatorname{dom}(f_n^q(y)),$

$$\langle a_n^q(y), A_n^q(y), f_n^q(y)(\langle \vec{z}, \vec{\nu} \rangle) \rangle \leq_{\mathbb{Q}_{u0}^n} \langle a_n^p(y), A_n^p(y), f_n^p(y)(\langle \vec{z}, \pi(\vec{\nu}) \rangle) \rangle.$$

(5) for all $n \geq l$, $A_n^q \subset \{x \mid \nu \in x \to \pi_{\beta_n^q, \beta_n^p}(\nu) \in x\}$. This is needed to ensure transitivity of $\leq_{\mathbb{P}}$.

Suppose p has length l, k > l, and $\langle \vec{x}, \vec{\nu} \rangle \in [\prod_{i \ge l} A_i^p \times B_i^p]^{<\omega}; \vec{x} := \langle x_l, ..., x_{k-1} \rangle, \vec{\nu} := \langle \nu_l, ..., \nu_{k-1} \rangle$. We define the weakest k - l-step extension of p obtained from $\langle \vec{x}, \vec{\nu} \rangle$ denoted by $p^{\frown} \langle \vec{x}, \vec{\nu} \rangle$ to be the condition

$$\langle x_0^p, f_0, \dots, x_{l-1}^p, f_{l-1}, x_l, f_l, \dots, x_{k-1}, f_{k-1}, A_k, F_k, A_{k+1}, F_{k+1}, \dots \rangle,$$

such that:

- (1) for $n \ge k$, $A_n = A_n^p \cap \{y \mid x_{k-1} \prec y\}$,
- (2) for n < l, for $x \in \mathcal{P}_{\kappa}(\kappa_n)$, and $\langle \vec{z}, \vec{\delta} \rangle \in \operatorname{dom}(f_n(x)), f_n(x)(\langle \vec{z}, \vec{\delta} \rangle) = f_n^p(x)(\langle \vec{x}, \vec{\nu} \rangle^{\frown} \langle \vec{z}, \vec{\delta} \rangle),$

(3) for $l \leq n < k$, for $x \in \mathcal{P}_{\kappa}(\kappa_n)$ with $\nu_x \in A_n^p(x)$, for all $\langle \vec{z}, \vec{\delta} \rangle \in \operatorname{dom}(f_n(x))$, $f_n(x)(\langle \vec{z}, \vec{\delta} \rangle) = \langle a_n^p(x), A_n^p(x), f_n^p(x)(\langle x_{n+1}, ..., x_{k-1}, \nu_{n+1}, ..., \nu_{k-1})^\frown \langle \vec{z}, \vec{\delta} \rangle) \rangle^\frown \nu_x;$ otherwise, if $\nu_x \notin A_n^p(x)$, for all $\langle \vec{z}, \vec{\delta} \rangle \in \operatorname{dom}(f_n(x))$, set $f_n(x)(\langle \vec{z}, \vec{\delta} \rangle) = \emptyset$. (4) for $n \geq k$ and $y \in A_n$, we have $F_n(y) = F_n^p(y)$.

We can finally define the full ordering:

Definition 2.5. $q \leq p$ if $q \leq^* p$ or for some $\langle \vec{y}, \vec{\nu} \rangle$, we have that $q \leq^* p^{\frown} \langle \vec{y}, \vec{\nu} \rangle$.

3. Preservation of μ

Define $\mathbb{P}_n := \{p \in \mathbb{P} \mid \text{lh}(p) = n\}$. We will show that (\mathbb{P}_0, \leq^*) preserves μ . The idea will be that for every n, we can regard it as a combination of two subposets, one with κ_n^{++} -c.c., and the other κ_{n+1} -closed. We use this to show that (\mathbb{P}_0, \leq^*) preserves κ_n for every n, and then conclude that it must preserve μ . We remark that our arguments can be adapted to show (\mathbb{P}_k, \leq^*) preserves μ , for every $k < \omega$.

Definition 3.1. For p, q in \mathbb{P}_0 , we say that $p \sim q$ if for all $k < \omega$, $B_k^p = B_k^q = B_k$, and there are measure one sets $A_k \subset A_k^p \cap A_k^q$, such that for all $k < \omega, x \in A_k, \langle \vec{z}, \vec{\nu} \rangle \in$ $[\prod_{i>k} A_i \times B_i]^{<\omega}$ with $x \prec \vec{z}$, we have that $a_k^p(x) = a_k^q(x), A_k^p(x) = A_k^q(x), f_k^p(x)(\langle \vec{z}, \vec{\nu} \rangle) =$ $f_k^q(x)(\langle \vec{z}, \vec{\nu} \rangle)$. Define $p \leq \gamma$ if there is $p' \sim p$ with $p' \leq q$.

Let $\mathbb{P}_0 \upharpoonright [n, \omega) := \{ \langle A_n^p, F_n^p, A_{n+1}^p, F_{n+1}^p, ... \rangle \mid p \in \mathbb{P}_0 \}$ with the induced ordering from \leq^{\sim} (which we denote the same). Note that $\langle \mathbb{P}_0, \leq^* \rangle$ and $\langle \mathbb{P}_0, \leq^{\sim} \rangle$ are isomorphic.

Proposition 3.2. $\langle \mathbb{P}_0 \upharpoonright [n, \omega), \leq^{\sim} \rangle$ is κ_n -closed, for all $n \geq 0$.

Proof. Suppose that $\tau < \kappa_n$ and $\langle p_\eta \mid \eta < \tau \rangle$ is a \leq^\sim -decreasing sequence in $\mathbb{P}_0 \upharpoonright [n, \omega)$. For each $\eta < \delta$, let $\langle A_k^{\eta, \delta} \mid n \leq k < \omega \rangle$ be measure one sets in U_k , respectively, witnessing that $p^{\delta} \leq^\sim p^{\eta}$.

For $k \ge n$, set $A_k^p = \triangle A_k^{\eta,\delta} = \{x \mid x \in \bigcap_{\eta \in x, \delta \in x} A_k^{\eta,\delta}\}$. Let $\overline{m} < \mu^+$ be above the supremum of all of the domains of the $f_k^{p_\eta}$'s, i.e.

$$\bar{m} > \sup_{\eta < \tau, k < \omega, x \in A_k^{p_\eta}, \langle \vec{z}, \vec{\nu} \rangle \in \operatorname{dom}(f_k^{p_\eta}(x))} \operatorname{dom}(f_k^{p_\eta}(x)(\langle \vec{z}, \vec{\nu} \rangle)).$$

Inductively on k, for all $x \in A_k^p$, set

$$a_k^p(x) = \bigcup_{\eta \in x \cap \tau} a_k^{p_\eta}(x) \cup \bigcup_{n \le m < k, w \in A_m^p, w \prec x} a_m^p(w) \cup \{m\},$$

where *m* is a maximal element above \bar{m} . Then let $A_k^p(x) = \bigcap_{\eta \in x \cap \tau} \pi_{\eta}^{-1}(A_k^{p_{\eta}}(x))$, where $\pi_{\eta} = \pi_{\max(a_k^p(x)), \max(a_k^{p_{\eta}}(x))}$.

Now let
$$B'_i := [y \mapsto A^p_i(y)]_{U_i}$$
. For all $\langle \vec{z}, \vec{\nu} \rangle \in [\prod_{i>k} A^p_i \times B'_i]^{<\omega}$ with $x \prec \vec{z}$, define $f^p_k(x)(\langle \vec{z}, \vec{\nu} \rangle) = \bigcup_{\eta \in x \cap \tau} f^{p_\eta}_k(x)(\langle \vec{z}, \pi^\eta(\vec{\nu}) \rangle),$

where π^{η} is the corresponding pointwise projections from the maximal coordinates of p to the maximal coordinates of p_{η} .

We claim that p is as desired. For if $\eta < \tau$, for $k \ge n$, let $A_k = A_k^p \cap \{x \mid \eta \in x\} \cap \{x \mid \nu \in x \to \pi_{\beta_k^p, \beta_k^{p_\eta}}(\nu) \in x\}$. Then $\langle A_k \mid k \ge n \rangle$ witness that $p \le p_\eta$.

For n > 0 and $p \in \mathbb{P}_0$, let $\pi_n(p) = \langle A_0^p, F_0^p, A_1^p, F_1^p, \dots, A_{n-1}^p, F_{n-1}^p \rangle$. Set $\mathbb{P}_{0n} := \{\pi_n(p) \mid p \in \mathbb{P}_0\}$ with the natural induced ordering from \leq^* .

Proposition 3.3. For all $n \ge 0$, \mathbb{P}_{0n+1} has the κ_n^{++} c.c.

Proof. By induction on n. Suppose for contradiction that $\{\pi_{n+1}(p_\eta) \mid \eta < \kappa_n^{++}\}$ is an antichain in \mathbb{P}_{0n+1} . By strengthening each p_η if necessary, we may assume that the part above n is the same, i.e. for all i > n, $[F_i^{p_\eta}]_{U_i} = [F_i]_{U_i}$ for all η . For i > n, denote $[F_i]_{U_i} := \langle a_i^*, B_i, f_i^* \rangle$, and let $\alpha_i = \max(a_i^*)$. Then each $B_i \in E_{i,\alpha_i}$. For m > n, set $i_m := j_{E_{n+1,\alpha_{n+1}}} \circ j_{n+1} \circ \dots j_{E_{m,\alpha_m}} \circ j_m$.

Fix $x \in A_n^{p_\eta}$. We will define functions $f_{x,m}^{\eta}$ for n < m as follows.

• If m = n+1, for $\nu \in B_{n+1}$, let $f^{\eta}_{x,\nu,n+1} := [z \mapsto f^{p_{\eta}}_{n}(x)(\langle z,\nu\rangle)]_{U_{n+1}}$. $|f^{p_{\eta}}_{n}(x)(\langle z,\nu\rangle)| \le \kappa^{n}_{x}$, so $|f^{\eta}_{x,\nu,n+1}| \le \kappa^{n}_{x}$. Then let $f^{\eta}_{x,n+1} := [\nu \mapsto f^{\eta}_{x,\nu,n+1}]_{E_{n+1,\alpha_{n+1}}}$. Again, we have that $|f^{\eta}_{x,n+1}| \le \kappa^{n}_{x}$

• If
$$m = n + 2$$
, for $\nu \in B_{n+1}$, $y \in A_{n+1}^{p_{\eta}}$, $\delta \in B_{n+2}$, with $\nu \in y$, let,
 $- f_{x,\nu,y,\delta}^{\eta} := [z \mapsto f_{n}^{p_{\eta}}(x)(\langle y, z, \nu, \delta \rangle)]_{U_{n+2}};$
 $- f_{x,\nu,y}^{\eta} := [\delta \mapsto f_{x,\nu,y,\delta}^{\eta}]_{E_{n+2,\alpha_{n+2}}};$
 $- f_{x,\nu}^{\eta} := [y \mapsto f_{x,\nu,y}^{\eta}]_{U_{n+1}};$
 $- f_{x,n+2}^{\eta} := [\nu \mapsto f_{x,\nu}^{\eta}]_{E_{n+1,\alpha_{n+1}}}.$
As before, $|f_{x,n+2}^{\eta}| \leq \kappa_{x}^{n}.$

• ...

Continue in a similar fashion for all m > n.

Then each $f_{x,m}^{\eta}$ is a partial function from $i_m(\mu^+)$ to κ_x^n of size less than or equal to κ_x^n . Define a partial function $F_m^{\eta}: \mathcal{P}_{\kappa}(\kappa_n) \times i_m(\mu^+) \rightarrow \{Y\} \cup \kappa$ by:

$$F_m^{\eta}(x,\alpha) := \begin{cases} Y & \text{if } \alpha \in i_m(a_n^{p_\eta}(x)) \\ f_{x,m}^{\eta}(\alpha) & \text{if } \alpha \in \text{dom}(f_{x,m}^{\eta}) \end{cases}$$

Let F^{η} be the function given by $F^{\eta}(m, x, \alpha) = F_m^{\eta}(x, \alpha)$. This is a function of size less than κ_n^+ . So, by applying the Δ -system lemma, we get an unbounded $I \subset \kappa_n^{++}$, such that $\langle F^{\eta} \mid \eta \in I \rangle$ forms a Δ system, and the functions have the same value on the kernel. Note that this implies that for all η, δ in I and for all $n < m, x \in \mathcal{P}_{\kappa}(\kappa_n)$, $i_m(a_n^{p_{\eta}}(x)) \cap \operatorname{dom}(f_{x,m}^{\delta}) = \emptyset$.

By the inductive hypothesis, if n > 0, \mathbb{P}_{0n} has the κ_{n-1}^{++} -c.c. So let η, δ be distinct points in I, such that if n > 0, $\pi_n(p_\eta)$ and $\pi_n(p_\delta)$ are compatible. We will construct $p \in \mathbb{P}_0$, such that $\pi_{n+1}(p)$ is a common extension of of $\pi_{n+1}(p_\eta)$ and $\pi_{n+1}(p_\delta)$.

Let $\bar{m} < \mu^+$ be above the supremum of the domains of $f_k^{p_\eta}(x)(h)$ and $f_k^{p_\delta}(x)(h)$, for $k \leq n, x \in A_k^{p_\eta} \cap A_k^{p_\delta}, h \in \text{dom}(f_k^{p_\eta}(x)) \cap \text{dom}(f_k^{p_\delta}(x))$. Also, let r be a common extension of $\pi_n(p_\eta)$ and $\pi_n(p_\delta)$, such that for all $k < n, x \in A_k^r, a_k^r(x) = a_k^{p_\eta}(x) \cup a_k^{p_\delta}(x) \cup c$, where $c \subset \mu^+ \setminus \bar{m}$. We will define p so that $p \upharpoonright n \sim r$.

For i < n, set $A_i^p = A_i^r$, for $x \in A_i^p$, set $a_i^p(x) = a_i^r(x), A_i^p(x) = A_i^r(x)$. And then $B_i^p = B_i^r$.

Also set $A_n^p = A_n^r \subset A_n^{p_\eta} \cap A_n^{p_\delta}$. For $x \in A_n^p$, let

$$a_n^p(x) = a_n^{p_\eta}(x) \cup a_n^{p_\delta}(x) \cup \bigcup_{\substack{i < n, w \in A_i^p, w \prec x \\ 6}} a_i^p(w) \cup \{m'\},$$

where $m' > \bar{m}$ is a maximal element in the extender ordering. Then, set

$$A_n^p(x) = \pi_{m',m_\eta}^{-1}(A_n^{p_\eta}(x)) \cap \pi_{m',m_\delta}^{-1}(A_n^{p_\delta}(x)),$$

where m_{η}, m_{δ} are the maximal elements of $a_n^{p_{\eta}}(x)$ and $a_n^{p_{\delta}}(x)$ respectively. Finally, for all m > n, let

$$f_{x,m} = f_{x,m}^{\eta} \cup f_{x,m}^{\delta}$$

This is a well-defined function because the values on the kernel of the Δ system obtained above are the same.

Denote:

- $f_{x,m} = [\nu \mapsto f_n^m(x)(\nu)]_{E_{n+1,\alpha_{n+1}}};$
- $f_n^m(x)(\nu) = [y \mapsto f_n^m(x)(\nu)(y)]_{U_{n+1}};$ $f_n^m(x)(\nu)(y) := [\delta \mapsto f_n^m(x)(\nu)(y)(\delta)]_{E_{n+2,\alpha_{n+2}}};$
- $f_n^m(x)(\nu)(y)(\delta) := [z \mapsto f_n^m(x)(\nu)(y)(\delta)(z)]_{U_{n+2}};$... and so on until we reach m.

Then we have that:

$$\forall_{E_{n+1,\alpha_{n+1}}}^* \nu_{n+1} \forall_{U_{n+1}}^* y_{n+1} \forall_{E_{n+2},\alpha_{n+2}}^* \nu_{n+2} \forall_{U_{n+2}}^* y_{n+2} \dots \forall_{E_m,\alpha_m}^* \nu_m \forall_{U_m}^* y_{m+2} \cdots y_{U_m}^* y_{U_m}^* y_{m+2} \cdots y_{U_m}^* y_{U_m}^*$$

$$(\dagger) : f_n^m(x)(\nu_{n+1})(y_{n+1})...(\nu_m)(y_m) = f_n^{p_\eta}(x)(\langle y_{n+1},...,y_m,\nu_{n+1},...,\nu_m\rangle) \cup f_n^{p_\delta}(x)(\langle y_{n+1},...,y_m,\nu_{n+1},...,\nu_m\rangle)$$

and

$$dom(f_n^m(x)(\nu_{n+1})(y_{n+1})...(\nu_m)(y_m)) \cap a_n^p(x) = \emptyset.$$

Then by taking diagonal intersection, for all $x \in A_k^{p_\eta} \cap A_k^{p_\delta}$, for all m > n, we have measure one sets $A_{n+1}^{x,m}, A_{n+2}^{x,m}, ..., A_m^{x,m}$ and $B_{n+1}^{x,m}, B_{n+2}^{x,m}, ..., B_m^{x,m}$, where each $A_i^{x,m} \in U_i$, $B_i^{x,m} \in E_{i,\alpha_i}$, such that for all $\langle \vec{y}, \vec{\nu} \rangle \in [\prod_{n < i \le m} A_i^{x,m} \times B_i^{x,m}]^{<\omega}$ with $x \prec \vec{y}$, we have that the above equality holds.

We illustrate how these sets are defined for m = n + 2:

- $B_{n+1} = \{ \nu \mid \forall^* y, \forall^* \delta, \forall^* z(\dagger) \text{ holds for } \langle y, z, \nu, \delta \rangle \}.$
- For every $\nu \in B_{n+1}$, let $A_{\nu} \in U_{n+1}$ witness it. Set $A_{n+1} = \triangle A_{\nu} = \{ y \mid y \in \bigcap_{\nu \in y} A_{\nu} \} \in U_{n+1};$
- For all $\nu \in B_{n+1}$, for all $y \in A_{\nu}$, let $B_{\nu,y} \in E_{n+2,\alpha_{n+2}}$ witness it. Set $B_{n+2} = \bigcap_{\nu,y} B_{\nu,y} \in E_{n+2,\alpha_{n+2}};$
- For all $\nu \in B_{n+1}$, $y \in A_{\nu}$, and $\delta \in B_{\nu,y}$, let $A_{\nu,y,\delta} \in U_{n+2}$ witness it. Set $A_{n+2} := \triangle A_{\nu,y,\delta} = \{ z \mid z \in \bigcap_{\delta \in z, y \prec z, \nu \in y} A_{\nu,y,\delta} \} \in U_{n+2};$

For such x, for i > n, let

$$A_i^x = \bigcap_{i \le m < \omega} A_i^{x,m}, B_i^x = \bigcap_{i \le m < \omega} B_i^{x,m}$$

Then set $A_i = \triangle A_i^x, B_i^p = \bigcap_{x \in \mathcal{P}_\kappa(\kappa_n)} B_i^x$. For $n < i < \omega$, let $A_i^p = A_i \cap \{x \mid \nu \in x \to (\pi_{\beta_i^p, \beta_i^{p_\eta}}(\nu) \in x, \pi_{\beta_i^p, \beta_i^{p_\delta}}(\nu) \in x)\}$. For $i \leq n$, let $F_i^p(y)$ be obtained from $F_i^r(y)$, restricted to $B_i^{p,s}$. For $x \in A_n^p$, m > n, and $\langle \vec{y}, \vec{\nu} \rangle$ in $[\prod_{i>n} A_i^p \times B_i^p]^{<\omega}$ with $x \prec \vec{y}$, let

$$f_n^p(x)(\langle y_{n+1}, ..., y_m, \nu_{n+1}, ..., \nu_m \rangle) = f_n^m(x)(\nu_{n+1})(y_{n+1})...(\nu_m)(y_m).$$

Then p is as desired.

Using a similar, and actually simpler argument, we get:

Lemma 3.4. Both (\mathbb{P}_0, \leq^*) and (\mathbb{P}, \leq) have the μ^+ -c.c.

Lemma 3.5. Let n > 0. (\mathbb{P}_0, \leq^*) preserves cardinals in the interval $[\kappa_n^{++}, \kappa_{n+1}]$.

Proof. Suppose otherwise. Let n be such that some regular V-cardinal $\tau \in [\kappa_n^{++}, \kappa_{n+1}]$ is collapsed. Let $p \in \mathbb{P}_0$, and $\lambda < \tau$ be such that $p \Vdash_{\mathbb{P}_0} \dot{h} : \lambda \to \tau$ is onto. Fix $\alpha < \lambda$. We will define $\theta \leq \kappa_n^{++}$ and $\langle p_\eta, \alpha_\eta \mid \eta < \theta \rangle$ by induction of η , such that:

- (1) $p_{\eta} \in \mathbb{P}_{0}, p_{\eta} \leq^{*} p, \alpha_{\eta} \in \tau,$ (2) $\langle p_{\eta} \upharpoonright [n+1, \omega) \mid \eta < \theta \rangle$ is \leq^{\sim} -decreasing,
- (3) $p_{\eta} \Vdash_{\mathbb{P}_0} \dot{h}(\alpha) = \alpha_{\eta}.$

Let α_0 and $p_0 \leq^* p$ be such that $p_0 \Vdash_{\mathbb{P}_0} \dot{h}(\alpha) = \alpha_0$. Suppose we have defined p_{ξ}, α_{ξ} , for all $\xi < \eta$. If $\eta = \kappa_n^{++}$, set $\theta = \eta$ and stop. Otherwise let $q \leq p$ be such that $q \upharpoonright n+1 = p \upharpoonright n+1$ and $q \upharpoonright [n+1,\omega) \leq p_{\xi} \upharpoonright [n+1,\omega)$ for all $\xi < \eta$. We can find such a condition because $\langle \mathbb{P}_0 \upharpoonright [n+1,\omega), \leq^{\sim} \rangle$ is κ_{n+1} -closed.

Suppose that there is $r \in \mathbb{P}_0, r \leq^* q$ and $\beta \notin \{\alpha_{\xi} \mid \xi < \eta\}$, such that $r \Vdash \dot{h}(\alpha) = \beta$. Then let $\alpha_{\eta} = \beta$ and $p_{\eta} = r$. Otherwise, set $\theta = \eta$, $q_{\alpha} := q$, and stop.

Claim 3.6. $\theta < \kappa_n^{++}$.

Proof. Otherwise $\langle \pi_{n+1}(p_\eta) \mid \eta < \kappa_n^{++} \rangle$ is an antichain in \mathbb{P}_{0n+1} of size κ_n^{++} . Contradiction with Proposition 3.3.

It follows that each q_{α} is defined. Note that for all α , $q_{\alpha} \upharpoonright n+1 = p \upharpoonright n+1$. Let $X_{\alpha} = \{\alpha_{\eta} \mid \eta < \theta\}$. Then $q_{\alpha} \Vdash \dot{h}(\alpha) \in X_{\alpha}$. Doing this inductively on $\alpha < \lambda$, we arrange that $\langle q_{\alpha} \upharpoonright [n+1,\omega) \mid \alpha < \kappa \rangle$ is \leq^{\sim} -decreasing. Finally let $X = \bigcup_{\alpha < \lambda} X_{\alpha}$, and let $q \leq^{*} p$ be such that for all $\alpha < \lambda$, $q \upharpoonright [n+1,\omega) \leq q_{\alpha} \upharpoonright [n+1,\omega)$ and $q \upharpoonright n+1 = p \upharpoonright n+1$. Then $q \Vdash_{\mathbb{P}_0} \operatorname{ran}(h) \subset X$, but $|X| < \tau$. Contradiction.

Corollary 3.7. \mathbb{P}_0 preserves μ .

For conditions $p, q \in \mathbb{P}$, we say that p and q are *tail equivalent*, if for some large enough $n, p \upharpoonright [n, \omega) \sim q \upharpoonright [n, \omega)$, as defined earlier, restricted to $\mathbb{P} \upharpoonright [n, \omega)$. In this case we write $p \sim_t q$. Denote the tail-equivalence class of p, by $t(p) := \{q \mid p \sim_t q\}$.

Definition 3.8. Let $\mathbb{D} := \{t(p) \mid p \in \mathbb{P}\}$ with the ordering $t(p) \leq_{\mathbb{D}} t(q)$ if for some n, $p \upharpoonright [n,\omega) \leq \ q \upharpoonright [n,\omega).$

By considering the map $p \mapsto t(p)$, we get the following:

Proposition 3.9. Both \mathbb{P} and \mathbb{P}_0 project to \mathbb{D} .

Proposition 3.10. Suppose that H is \mathbb{D} -generic, G_0 is \mathbb{P}_0/H -generic, and $p \in \mathbb{P}/H$. Then there is some n, such that $1^{p} \upharpoonright [n, \omega) \in G_0$.

Lemma 3.11. Let H be \mathbb{D} -generic. \mathbb{P}/H has the μ -c.c.

Proof. Suppose $\{p_{\eta} \mid \eta < \mu\}$ are conditions in \mathbb{P}/H . I.e. for each $\eta, t(p_{\eta}) \in H$. By passing to an unbounded subset of μ , we may assume that there is $\bar{n} < \omega$, and \vec{x} of length \bar{n} , such that all conditions have length \bar{n} and Prikry stem \vec{x} . Let G_0 be \mathbb{P}_0/H -generic. Then for all η , there is some $n_{\eta} > \bar{n}$, such that $1 \widehat{p}_{\eta} \upharpoonright [n_{\eta}, \omega) \in G_0$.

Since in $V[G_0]$, μ is a regular cardinal, there is some unbounded $I \subset \mu$, such that for all $\eta \in I$, $n_{\eta} = n$. Now run a Δ -system argument for $\{p_{\eta} \upharpoonright n \mid \eta \in I\}$ in $V[G_0]$. This is similar (and actually simpler) to what was done in Proposition 3.3. Then we can find $\eta < \delta$, in I, such that $p_{\eta} \upharpoonright n, p_{\delta} \upharpoonright n$ have a common extension in $\mathbb{P} \upharpoonright n$. Let r be such an extension, and let $q \in \mathbb{P} \upharpoonright [n, \omega)$ be a common extension of $p_{\eta} \upharpoonright [n, \omega)$ and $p_{\delta} \upharpoonright [n, \omega)$. Then $r \cap q$ is a common extension of p_n, p_{δ} .

Corollary 3.12. \mathbb{P} preserves μ .

4. The Prikry Lemma

First we show the diagonal lemma:

Lemma 4.1. Suppose that p is a condition of length l and for all $\langle x, \nu \rangle \in A_l^p \times B_l^p$ with $\nu \in x$, we have $p_{x,\nu} \leq^* p^{\frown} \langle x, \nu \rangle$. Suppose also that:

(1) There are $\langle \beta_n \mid l < n < \omega \rangle$, such that every $\beta_n^{p_{x,\nu}} \leq_{E_n} \beta_n$, and for all $y \in A_l^q$, for all h, with $y \prec h$,

$$\langle f_l^{p_{x,\nu}}(y)(\pi^{x,\nu}(h)) \upharpoonright \operatorname{dom}(f_l^{p_{x,\nu}}(y)(\pi^{x,\nu}(h))) \setminus a_l^p(y) \mid \nu \in x, x \prec y \rangle$$

are pairwise compatible, where $\pi^{x,\nu}$ is the projection from the β_n 's to the $\beta_n^{p_x,\nu}$'s. (2) $\langle p_{x,\nu} \upharpoonright [l+1,\omega) \rangle$ are \leq^{\sim} -pairwise compatible.

Then there is a direct extension $q \leq^* p$, such that if r is a nondirect extension of q, then for some x, ν , we have that $r \leq p_{x,\nu}$. Moreover, we can choose q, so that for all $x \in A_l^q$, $a_l^q(x) = a_l^p(x).$

Proof. For simplicity assume that $\ln(p) = 1$. Denote $p_{x,\nu} = \langle x_0, f_0^{x,\nu}, x, f_1^{x,\nu}, A_2^{x,\nu}, F_2^{x,\nu}, \ldots \rangle$, and for n > 1, $F_n^{x,\nu}(y) = \langle a_n^{x,\nu}(y), A_n^{x,\nu}(y), f_n^{x,\nu}(y) \rangle$. By taking diagonal intersections, by item (2), we can assume that for all n > 1, for all $\nu \in x, \delta \in w$, for all $y \in A_n^p$ with $x \prec y, z \prec y$ and for all h with $y \prec h$, $\langle a_n^{w,\delta}(y), A_n^{w,\delta}(y), f_n^{w,\delta}(y)(\pi_1(h)) \rangle$ and $\langle a_n^{x,\nu}(y), A_n^{x,\nu}(y), f_n^{x,\nu}(y)(\pi_2(h)) \rangle$ are pairwise compatible, where π_1 and π_2 project to the maximal coordinates of $p^{w,\delta}$ and $p^{x,\nu}$, respectively, from some coordinate above both.

For every ν , we have that $B_{\nu} := \{x \in A_1^p \mid \nu_x \in A_1^p(x)\} \in U_1$. Set $A_1^q = \Delta_{\nu} B_{\nu}$. For $y \in A_1^q$, set $a_1^q(y) = a_1^p(y), A_1^q(y) = A_1^p(y)$. For n > 1, let $A'_n = \Delta A_n^{x,\nu} := \{z \mid z \in \bigcap_{x \prec z, \nu \in x} A_n^{x,\nu}\}$. For n > 1 and $y \in A'_n$, set:

- (1) $a_n^q(y) \supset \bigcup_{x \prec y, \nu \in x} a_n^{x, \nu}(y)$, and (2) $A_n^q(y) = \bigcap_{x \prec y, \nu \in x} \pi_{\max(a_n^q(y)), \max(a_n^{x, \nu}(y))}^{-1} A_n^{x, \nu}(y)$.

This is possible since there is a maximal element for the a's unboundedly often. And by choosing the a_n^q 's inductively for n, we maintain the last item of 2.4. Then, for n > 1, let $A_n^q = A_n' \cap \{x \mid \nu \in x \to \pi_{\beta_n^q, \beta_n^p}(\nu) \in x\}.$

For every $\langle x,\nu\rangle$ and $h\in [\prod_{i>1}^{n}A_i^{x,\nu}\times B_i^{x,\nu}]^{<\omega}$, let $\pi_{x,\nu,p}(h)$ be the corresponding pointwise projection of h from the maximal coordinates of $p_{x,\nu}$ to p. Let $\pi_{q,x,\nu}(h)$ be the projection from the maximal coordinates of q to $p_{x,\nu}$, and let $\pi_{q,p}(h)$ be the projection from the maximal coordinates of q to p.

Since every $p_{x,\nu} \leq p$, let $A_0^{x,\nu} \in U_0$ be such that for all $y \in A_0^{x,\nu}$, for all $h \in [\prod_{i>1} A_i^{x,\nu} \times B_i^{x,\nu}]^{<\omega}$ with $y \prec h$, $f_0^{x,\nu}(y)(h) \leq f_0^p(\langle x,\nu \rangle \cap \pi_{x,\nu,p}(h))$. For all $y \in \mathcal{P}_{\kappa}(\kappa_0)$, and $x \in A_1^q$, $\nu \in B_1^q = B_1^p$ with $\nu \in x$, set $f_0^q(y)(\langle x,\nu \rangle) = f_0^p(y)(\langle x,\nu \rangle)$, and

- if $y \in A_0^{x,\nu}$, set $f_0^q(y)(\langle x,\nu\rangle^{\frown}h) = f_0^{x,\nu}(\pi_{q,x,\nu}(h)),$ otherwise, set $f_0^q(y)(\langle x,\nu\rangle^{\frown}h) = f_0^p(y)(\langle x,\nu\rangle^{\frown}\pi_{q,p}(h)).$

For all $y \in A_1^q$, for each h with $y \prec h$, set

$$f_1^q(y)(h) = \bigcup_{x,\nu:\nu \in x, x \prec y} f_1^{x,\nu}(y)(\pi_{q,x,\nu}(h)) \upharpoonright \operatorname{dom}(f_1^{x,\nu}(y)(\pi_{q,x,\nu}(h))) \setminus a_1^p(y).$$

Then set $F_1^q(y) = \langle a_1^q(y), A_1^q(y), f_1^q(y) \rangle$. For n > 1 and $y \in A_n^q$, set $f_n^q(y)(h) = \bigcup_{x \prec y, \nu \in x} f_n^{x, \nu}(y)(\pi_{q, p}(h))$ and $F_n^q(y) = \langle a_n^q(y), A_n^q(y), f_n^q(y) \rangle$. Then q is as desired.

Corollary 4.2. Suppose that p is a condition, D is an open dense set, and n > lh(p). Then there is a condition $q \leq^* p$ such that for all $r \leq q$ with length n, if there is $r' \leq^* r$ in D, then r is in D.

Proof. By induction on n-l. If $n = \ln(p) + 1$, the result follows from the Diagonal lemma. Suppose $n > \ln(p) + 1$. For every $\langle x, \nu \rangle$, such that $p \land \langle x, \nu \rangle$ is defined, by the inductive assumption let $p_{x,\nu} \leq p^{(x,\nu)}$ be such that for all $r \leq p_{x,\nu}$ with length n, if there is $r' \leq r$ in D, then r is in D.

Defining these condition inductively, we arrange that they satisfy the assumptions of the diagonal lemma. Apply the diagonal lemma to the conditions $p_{x,\nu}$ and p to get $q \leq p$, such that $q \cap \langle x, \nu \rangle \leq^* p_{x,\nu}$, for all x, ν . Then q is as desired. For if $r \leq q$ is with length n, let x, ν be such that $r \leq p_{x,\nu}$. Now, if $r' \leq^* r$ is in D, then by the way we chose $p_{x,\nu}$, it follows that r is in D.

Remark 1. We can define q as above so that for all $l \leq k < n$ and $x \in A_k^q$, $a_k^p(x) = a_k^q(x)$. That is because when running the argument above, by induction, we may assume that for all l < k < n, for all x, ν and $y \in A_k^{p_{x,\nu}}$, $a_k^{p_{x,\nu}}(y) = a_k^p(y)$. Then, as in the proof of the Diagonal lemma, when diagonalizing over the $p_{x,\nu}$'s we get that for all $l \leq k < n$ and $x \in A_k^q, a_k^q(x) = a_k^p(x).$

Lemma 4.3. (Prikry lemma) Suppose that D is an open dense set and p is a condition with length l. Then there is some n and $q \leq^* p$, such that for all $\vec{x}, \vec{\nu}$ of length n, such that $q^{\frown}\langle \vec{x}, \vec{\nu} \rangle$ is defined, we have that $q^{\frown}\langle \vec{x}, \vec{\nu} \rangle \in D$.

Proof. First by shrinking measure one sets, we may assume that for some fixed n, for all $r \leq p$ of length n+l, there is some $r' \leq r$ such that $r' \in D$. Let $q \leq p$ be given by the above corollary applied to D. Then every *n*-step extension of q is in D.

Lemma 4.4. For every $p \in \mathbb{P}$ and formula ϕ , there is $q \leq^* p$, such that q decides ϕ .

Proof. Apply the Prikry lemma for the set $\{q \mid q \parallel \phi\}$ to find $p' \leq p$ and n, such that every *n*-step extension of p' is in D'. Then by shrinking measure one sets, in a rather standard way, we obtain $q \leq p'$, such that all *n*-step extensions of q decide ϕ the same way. Then q decides ϕ .

Corollary 4.5. \mathbb{P} does not add bounded subsets of κ

Proof. This follows from the Prikry property and since $\langle \mathbb{P}, \leq^* \rangle$ is κ -closed.

Corollary 4.6. \mathbb{P} preserves cardinals up to and including κ .

5. The generic extension

Prepare the ground model V, such that the supercompactness of κ is preserved by forcing with \mathbb{P}_0 . Since \mathbb{P}_0 is κ_0 -closed, and so does not add subsets of κ , by starting with a model of GCH, we have that in V, $2^{\tau} = \tau$ for all inaccessible $\tau < \kappa$. Also, in V, $\operatorname{GCH}_{\geq \kappa}$ holds.

Let G be P-generic. Let $\langle x_n \mid n < \omega \rangle$ be the diagonal supercompact Prikry sequence added by G. Then $\bigcup_n x_n = \kappa_\omega$ and $V[G] \models (\forall i < \omega) \operatorname{cf}(\kappa_i) = \omega$ and $\mu = \kappa^+$. Next we show that the forcing blows up the powerset of κ .

Lemma 5.1. Suppose $n < \omega, \alpha < \mu^+$, and p is such that $n \ge \ln(p)$ and for all $y \in A_n^p, \alpha \in a_n^p(y)$. Then $D_{n,\alpha} := \{q \mid \ln(q) > n, (\exists \beta := [x \mapsto \beta_x]_{U_n})(\forall_{U_n} x)(\forall h \in \operatorname{dom}(f_n^p(x)))f_n^p(x)(h)(\alpha) = \beta_x\}$ is dense below p.

Proof. Let $q \leq p$ and $\ln(q) > n$. Say $q \leq^* p^{\frown}\langle \vec{x}, \vec{\nu} \rangle$, and let ν is the $n - \ln(p)$ - th element of the sequence $\vec{\nu}$. Then let $\beta := \pi_{[x \mapsto \max(a_n^p(x))]_{U_n}, j_n(\alpha)}(\nu)$. Denote $\beta = [x \mapsto \beta_x]_{U_n}$. Then by definition of the Q-modules, we have that for U_n -almost all x, for all $h \in \operatorname{dom}(f_n^q(x))$, $f_n^q(x)(h)(\alpha) = \beta_x = \pi_{\max(a_n^p(x), \alpha)}(\nu_x)$.

For p in $D_{n,\alpha}$, define $g_n^p(\alpha) = \beta$, where β witnesses that p is in that set. Let

$$F := \bigcup_{p \in G, n \ge \mathrm{lh}(p), y \in A_n^p} a_n^p(y).$$

Note that by genericity of the Prikry sequence and definition of \mathbb{P} , this is the same as taking $F = \bigcup_{p \in G, n \ge \ln(p)} a_n^p(x_n)$. Define $g_n^* : F \to \kappa_n$ by $g_n^*(\alpha) = g_n^p(\alpha)$ for some p in $G \cap D_{n,\alpha}$, if such exists, and 0 otherwise.

Lemma 5.2. F is unbounded in μ^+

Proof. Let $\alpha < \mu^+$. We claim that the set $D_{\alpha} := \{p \mid (\exists \alpha' > \alpha) (\exists i \ge \ln(p)) (\forall y \in A_i^p) \alpha' \in a_i^p(y)\}$ is dense. Let p be given. Since:

$$\beta_0 := \sup_{n \ge \ln(p), y \in A_n^p, h \in \operatorname{dom}(f_n^p(y))} \operatorname{dom}(f_n^p(y)(h)) < \mu^+,$$

we have that $\beta := \max(\beta_0, \alpha) < \mu^+$. Take α' with $\beta < \alpha' < \mu^+$. Now we can extend p to a condition q, so that for some $n > \ln(q)$, for all $y \in A_n^q$, we have that $\alpha' \in a_n^q(y)$

Remark 2. By a similar argument, we get that $F \cap \mu$ is unbounded in μ .

Lemma 5.3. If $\alpha < \beta$ are both in F, then for all large $n, g_n^*(\alpha) < g_n^*(\beta)$.

Proof. Let p_1, p_2 in G witness that $\alpha, \beta \in F$. We can find a common extension $p \in G$, such that for all $n \geq \ln(p)$, for all $y \in A_n^p$, $\{\alpha, \beta\} \subset a_n^p(y)$. We will show that for all $n \geq \ln(p), g_n^*(\alpha) < g_n^*(\beta)$. To this end, let $q \in G$ be such that $q \leq p$ and $\ln(q) > n$. Let $q \leq^* p^{\frown}\langle \vec{x}, \vec{\nu} \rangle$, and let ν is the $n - \ln(p)$ - th element of the sequence $\vec{\nu}$. Then let $\delta := \pi_{[x \mapsto \max(a_n^p(x))]_{U_n}, j_n(\alpha)}(\nu)$ and $\delta' := \pi_{[x \mapsto \max(a_n^p(x))]_{U_n}, j_n(\beta)}(\nu)$. Then by definition of the Q-modules, we have that for U_n -almost all x, for all $h \in \operatorname{dom}(f_n^q(x)), f_n^q(x)(h)(\alpha) =$ $\delta_x < \delta'_x = f_n^q(x)(h)(\beta)$. So, $g_n^*(\alpha) = \delta < \delta' = g_n^*(\beta)$.

We have that every g_n^* has range κ_n . Next we use the genericity of $\langle x_n \mid n < \omega \rangle$ to define functions with ranges in $\kappa_{x_n}^n := |x_n|$. Now, for all η , let F_n^{η} be the function such that $[F_n^{\eta}]_{U_n} = \eta$. In V[G], define functions $\langle t_\alpha \mid \alpha < \mu^+ \rangle$ in $\prod_n \kappa_{x_n}^n$ by

$$t_{\alpha}(n) := F_n^{g_n^*(\alpha)}(x_n)$$

Then $\langle t_{\alpha} \mid \alpha \in F \rangle$ are increasing sequences in $\prod_{n} \kappa_{x_{n}}^{n}$ mod finite.

Corollary 5.4. $V[G] \models 2^{\kappa} = \mu^+$.

6. No very good scale

In this section we show that there is no very good scale at κ in V[G]. Suppose for contradiction, that in V[G], $\langle f_{\alpha} \mid \alpha < \mu \rangle$ is a very good scale in some product $\prod_{n} \tau_{n}$, of regular cardinals with supremum κ . For every *n* there is some *n'*, such that $\tau_{n} < \kappa_{x_{n'}}$. Suppose for simplicity that n' = n. The general case is similar. Also suppose for simplicity that all of this is forced by the empty condition.

Proposition 6.1. For all $\alpha < \mu$ and $p \in \mathbb{P}_0$, there is $q \leq^* p$, such that every n + 1-step extension of q decides a value of $\dot{f}_{\alpha}(n)$, and such that for all $k \leq n, x \in A_k^q$, $a_k^q(x) = a_k^p(x)$.

Proof. Let $D := \{q \mid \exists \gamma (q \Vdash \dot{f}_{\alpha}(n) = \gamma)\}$; this is clearly a dense open set. Then by Corollary 4.2, we get $q \leq^* p$ such that for all $r \leq q$ with length n + 1, if there is $r' \leq^* r$ in D, then r is in D.

Claim 6.2. For all $r \leq p$ with h(r) = n + 1, there is $r' \leq^* r$ with $r' \in D$.

Proof. Fix such r; say $x := x_n^r$. Then $r \Vdash \dot{f}_{\alpha}(n) < \kappa_x$. Apply the Prikry property to " $\dot{f}_{\alpha}(n) = \gamma$ ", for all $\gamma < \kappa_x$, to construct a \leq^* -decreasing sequence $\langle r_{\gamma} \mid \gamma < \kappa_x \rangle$ of direct extensions of r, deciding these formulas. Then let r' be stronger than each r_{γ} ; $r' \in D$.

It follows that every $r \leq q$ with length n + 1 is in *D*. Also, by Remark 1, for all $k \leq n, x \in A_k^q, a_k^q(x) = a_k^p(x)$.

Remark 3. Since (\mathbb{P}, \leq^*) is κ_0 -closed, the above proposition also works for functions in $\prod_n \kappa_{x_n}^+, \prod_n \kappa_{x_n}^n, \prod_n (\kappa_{x_n}^n)^+$, etc. (recall $\kappa_x^n = |x|$ for $x \in \mathcal{P}_{\kappa}(\kappa_n)$)

Now let H be \mathbb{D} -generic induced from G, and let G_0 be \mathbb{P}_0/H -generic over V. Since \mathbb{P}/H has the μ -chain condition there is a club subset of μ , $E \in V[H]$, such that every point in E is very good, and of course E remains a club in $V[G_0]$.

For two functions f, g, we will write $f <_n g$ to denote that for all $k \ge n$, f(k) < g(k).

Lemma 6.3. In $V[G_0]$, there is $n < \omega$, and $a < \kappa$ -club $C \subset \mu$, such that for all $\alpha < \beta$ in C, there is $p \in G_0$, such that $p \Vdash_{\mathbb{P}} \dot{f}_{\alpha} <_n \dot{f}_{\beta}$.

Proof. For every $\delta < \mu$ with $\omega < \operatorname{cf}^{V}(\delta) = \operatorname{cf}^{V[G_0]}(\delta) < \kappa$, let $Y_{\delta} \in V$ be any club in δ of order type $\operatorname{cf}^{V}(\delta)$. Enumerate $\mathcal{P}^{V}(Y_{\delta})$ by $\{C_{\delta,i} \mid i < 2^{\operatorname{cf}(\delta)}\}$. Since κ is strong limit, we have that $2^{\operatorname{cf}(\delta)} < \kappa$. So, by applying the Prikry property, we can produce a condition p_{δ} of length 0, such that for each *i*, and $n < \omega$, p_{δ} decides whether $C_{\delta,i}$ and *n* witness very goodness of δ . By density, we choose each $p_{\delta} \in G_0$. By assumption, for club many δ 's there is some *i*, *n* such that $C_{\delta,i}$ and *n* witness very goodness.

Let $j: V[G_0] \to M$ be a μ -supercompact embedding with critical point κ . Set $\rho := \sup j^* \mu$. Then by elementarity, there is a condition $p^* \in j(G_0)$, $n < \omega$, and $C^* \in M$ of order type $\operatorname{cf}^M(\rho) = \mu$, such that p^* forces that C^*, n witness that ρ is very good. Let $C := \{\gamma < \mu \mid j(\gamma) \in C^*\}.$

Then C is $< \kappa$ club in μ . Now suppose that $\alpha < \beta$ are in C and $q \in G_0$. Let $r^* \leq^* j(q), p^*$ be in $j(G_0)$. Then $r^* \Vdash_{j(\mathbb{P})} j(\dot{f})_{j(\alpha)} <_n j(\dot{f})_{j(\beta)}$ (since p^* forces it). So, by elementarity, there is a condition $p \in G_0, p \leq^* q$, such that $p \Vdash_{\mathbb{P}} \dot{f}_{\alpha} <_n \dot{f}_{\beta}$.

Let \hat{C} be a \mathbb{P}_0 name for a club as above and suppose that the empty condition forces (over \mathbb{P}_0) that \dot{C} , n are as above. I.e. for all $p \in \mathbb{P}_0$, and $\alpha < \beta < \mu$, if $p \Vdash_{\mathbb{P}_0} \alpha, \beta \in \dot{C}$, then there is $q \leq^* p$, such that $q \Vdash_{\mathbb{P}} \dot{f}_{\alpha} <_n \dot{f}_{\beta}$.

Lemma 6.4. For all $\tau < \kappa_{\omega}$ and $p \in \mathbb{P}_0$, there is $X \subset \mu$ in V with $|X| = \tau$ and $r \leq^* p$, such that $r \Vdash_{\mathbb{P}_0} X \subset \dot{C}$.

Proof. Let m be such that $\tau < \kappa_m$. We use the following claim.

Claim 6.5. For all $\alpha < \mu$, for all p, there is $\beta > \alpha$ and $q \leq^* p$, such that $\pi_m(q) = \pi_m(p)$ and $q \Vdash_{\mathbb{P}_0} \beta \in \dot{C}$.

Proof. Construct \leq^* -decreasing sequence of conditions $\langle q_k \mid k < \omega \rangle$ and an increasing sequence of points $\langle \alpha_k \mid k < \omega \rangle$, such that $\alpha_0 = \alpha$, every $q_k \Vdash_{\mathbb{P}_0} \dot{C} \cap (\alpha_k, \alpha_{k+1}] \neq \emptyset$, and $\pi_m(q_k) = \pi_m(p)$. We can do this by standard arguments since \mathbb{P}_{0m} has the κ_{m-1}^{++} -c.c. and $\mathbb{P} \upharpoonright [m, \omega)$ is κ_m -closed. Then let $\beta = \sup_k \alpha_k$ and let $q \leq^* q_k$ for all k. Then $q \Vdash_{\mathbb{P}_0} \beta \in \dot{C}$.

Fix p. We will construct a sequence $\langle \beta_{\eta} \mid \eta < \tau \rangle$ and $\langle q_{\eta} \mid \eta < \tau \rangle$, such that for each η , $\pi_m(q_{\eta}) = \pi_m(p)$ and $\langle q_{\eta} \upharpoonright [m, \omega) \mid \eta < \tau \rangle$ is \leq^{\sim} -decreasing.

Suppose we have defined the sequences up to η . Let $q \leq^* p$ be such that $\pi_m(q) = \pi_m(p)$ and $q \upharpoonright [m, \omega) \leq^\sim q_{\xi} \upharpoonright [m, \omega)$ for all $\xi < \eta$. Let $q_{\eta} \leq^* q, \beta_{\eta} > \sup_{\xi < \eta} \beta_{\xi}$ be given by the claim applied to q and $\sup_{\xi} \beta_{\xi}$.

Finally let $r \leq^* p$ be such that $\pi_m(r) = \pi_m(p)$ and $r \upharpoonright [m, \omega) \leq^\sim q_\eta \upharpoonright [m, \omega)$ for all $\eta < \tau$. Set $X = \{\beta_\eta \mid \eta < \tau\}$. Then $r \Vdash_{\mathbb{P}_0} X \subset \dot{C}$. \Box

Apply the above lemma to find a condition $r \in \mathbb{P}_0$ and $X \subset \mu$ of size κ_n^{++} , such that $r \Vdash_{\mathbb{P}_0} X \subset \dot{C}$. For every $\alpha \in X$, let $p_\alpha \leq^* r$ be given by Proposition 6.1. I.e. every $q \leq p_\alpha$ with length n + 1 decides $\dot{f}_\alpha(n)$, and for all $k \leq n, x \in A_k^q$, $a_k^{p_\alpha}(x) = a_k^r(x)$. $\mathbb{P} \upharpoonright [n + 1, \omega)$ is κ_{n+1} -closed and $|X| = \kappa_n^{++}$. So by defining the p_α 's inductively, we arrange that $\langle p_\alpha \upharpoonright [n + 1, \omega) \mid \alpha \in X \rangle$ is \leq^\sim -decreasing.

Consider $\{\pi_{n+1}(p_{\alpha}) \mid \alpha \in X\} \subset \mathbb{P}_{0n+1}$. By the same Δ -system argument as in Proposition 3.3, there is an unbounded $X' \subset X$, such that $\{\pi_{n+1}(p_{\alpha}) \mid \alpha \in X'\}$ are pairwise compatible. But that means $\{p_{\alpha} \mid \alpha \in X'\}$ are pairwise compatible with respect to \leq^* . For all α, β in X', let $p_{\alpha,\beta} \leq^* p_{\alpha}, p_{\beta}$ be such that $p_{\alpha,\beta} \Vdash_{\mathbb{P}} \dot{f}_{\alpha} <_n \dot{f}_{\beta}$. Let $r_{\alpha,\beta} \leq p_{\alpha,\beta}$ be of length n + 1 and of the form $r_{\alpha,\beta} = p_{\alpha,\beta}^{\frown}\langle \vec{x}, \vec{\nu} \rangle$, for some $\vec{x}, \vec{\nu}$. But then since for all $k \leq n, x \in A_k^q, a_k^{p_{\alpha}}(x) = a_k^r(x)$, we have that there are $\vec{x}_{\alpha,\beta}, \vec{\nu}_{\alpha,\beta}$, such that:

- $r_{\alpha,\beta} \leq p_{\alpha}^{\frown} \langle \vec{x}_{\alpha,\beta}, \vec{\nu}_{\alpha,\beta} \rangle$
- $r_{\alpha,\beta} \leq p_{\beta}^{\frown} \langle \vec{x}_{\alpha,\beta}, \vec{\nu}_{\alpha,\beta} \rangle$

Denote $h_{\alpha,\beta} := \langle \vec{x}_{\alpha,\beta}, \vec{\nu}_{\alpha,\beta} \rangle$. The number of possible $h_{\alpha,\beta}$'s is κ_n , and $|X'| = \kappa_n^{++} = (2^{\kappa_n})^+$. By Erdos-Rado, the function $\langle \alpha, \beta \rangle \mapsto h_{\alpha,\beta}$ has a homogenous set Y is size κ_n^+ . Let $\langle \vec{x}, \vec{\nu} \rangle = h_{\alpha,\beta}$ for all α, β in Y.

For all $\alpha \in Y$, let $\gamma_{\alpha} < \kappa$ be such that, $p_{\alpha} \langle \vec{x}, \vec{\nu} \rangle \Vdash \dot{f}_{\alpha}(n) = \gamma_{\alpha}$. (Here we use that p_{α} is as in the conclusion of Proposition 6.1.) Suppose that $\alpha < \beta$ are both in Y. Since $r_{\alpha,\beta} \leq p_{\alpha,\beta}$ and $p_{\alpha,\beta} \Vdash \dot{f}_{\alpha} <_n \dot{f}_{\beta}$, we have that $r_{\alpha,\beta} \Vdash \dot{f}_{\alpha}(n) < \dot{f}_{\beta}(n)$. But $r_{\alpha,\beta} \leq^* p_{\alpha} \langle \vec{x}, \vec{\nu} \rangle, p_{\beta} \langle \vec{x}, \vec{\nu} \rangle$, so $\gamma_{\alpha} < \gamma_{\beta}$.

But then $\{\gamma_{\alpha} \mid \alpha \in Y\}$ is a subset of κ of size κ_n^+ . Contradiction.

7. BAD SCALE

Recall that we prepared the ground model V, so that the supercompactness of κ is preserved by forcing with \mathbb{P}_0 . In V, fix a scale $\langle g_{\alpha}^* | \gamma < \mu \rangle \in V$ in $\prod_n \kappa_n^+$. Set $S := \{\gamma < \mu \mid \omega < \operatorname{cf}(\gamma) < \kappa, \gamma$ is a bad point for $\langle g_{\alpha}^* \mid \gamma < \mu \rangle \}$. By standard reflection arguments S is stationary in V. Also, since \mathbb{P}_0 preserves μ and is κ^+ -closed, $\langle g_{\alpha}^* \mid \gamma < \mu \rangle$ remains a bad scale after forcing with \mathbb{P}_0 . More precisely, if G_0 is \mathbb{P}_0 -generic, a point of cofinality less than κ is bad in V iff it is bad in $V[G_0]$, and the set S is stationary in $V[G_0]$ (since κ remains supercompact in $V[G_0]$).

So if H is \mathbb{D} -generic, since \mathbb{P}_0 projects to \mathbb{D} , we have that S is stationary in V[H]. Then by the μ -chain condition of \mathbb{P}/\mathbb{D} , S is stationary after forcing with \mathbb{P} .

The next lemma will be used to show that a witness of goodness in the generic extension gives rise to a witness of goodness in the ground model. In particular, if a point is bad in V, then it is bad in V[G].

Lemma 7.1. Let $\tau < \kappa$ be a regular uncountable cardinal in V (and so in V[G]), and suppose $V[G] \models A \subset ON$, o.t. $(A) = \tau$. Then there is a $B \in V$ such that B is an unbounded subset of A.

Proof. Let $p \in G$, $p \Vdash \dot{h} : \tau \to \dot{A}$ enumerate \dot{A} . By the Prikry lemma, define a \leq^* -decreasing sequence $\langle p_{\alpha} \mid \alpha < \tau \rangle$, such for every $\alpha < \tau$, $p_{\alpha} \leq^* p$ and there is $n_{\alpha} < \omega$, such that every $q \leq p_{\alpha}$ with length n_{α} decides $\dot{h}(\alpha)$. Then there is an unbounded $I \subset \tau$ and $n < \omega$ such that for all $\alpha \in I$, $n = n_{\alpha}$. Let p' be stronger than all p_{α} for $\alpha < \tau$. By appealing to density, we may assume that $p' \in G$. Let $q \leq p$ be a condition in G with length n, and set $B = \{\gamma \mid (\exists \alpha \in I)q \Vdash \dot{h}(\alpha) = \gamma\}$. Then B is as desired.

Note that the above lemma already implies that the approachability property fails in V[G], and so weak square also fails.

Recall that for every $x \in \mathcal{P}_{\kappa}(\kappa_n)$, κ_x^n denotes |x|, which is a cardinal on a U_n -measure one set. Also, $\forall n < \omega, \forall \eta < \kappa_n^+$, we fixed $F_n^{\eta} : \mathcal{P}_{\kappa}(\kappa_n) \longrightarrow V$, such that $[F_n^{\eta}]_{U_n} = \eta$. We may assume that $\forall x F_n^{\eta}(x) < (\kappa_x^n)^+$. Define in $V[G], \langle g_\beta | \beta < \mu \rangle$ in $\prod_n (\kappa_{x_n}^n)^+$ by:

$$g_{\beta}(n) = F_n^{g_{\beta}(n)}(x_n)$$

* (...)

To show that this is a scale we need the following bounding lemma.

Lemma 7.2. Suppose that in V[G], $h \in \prod_n (\kappa_{x_n}^n)^+$. Then there is a sequence of functions $\langle H_n \mid n < \omega \rangle$ in V, such that dom $(H_n) = \mathcal{P}_{\kappa}(\kappa_n)$, $H_n(x) < (\kappa_x^n)^+$ for all x, and for all large n, $h(n) \leq H_n(x_n)$.

Proof. Let p force that $\dot{h} \in \prod_n (\kappa_{\dot{x}_n}^n)^+$. For simplicity, say $\ln(p) = 0$.

Fix $n < \omega$. Let $p_n \leq^* p$ be such that every n + 1-step extension decides $\dot{h}(n)$. Let $q \leq^* p_n$, for all n. For all $\vec{z}, \vec{\nu}$ of length n+1, such that $q \wedge \langle \vec{z}, \vec{\nu} \rangle$ is defined, let $\gamma_{\vec{z},\vec{\nu}}$ be such that $q \wedge \langle \vec{z}, \vec{\nu} \rangle \Vdash \dot{h}(n) = \gamma_{\vec{z},\vec{\nu}}$. For $x \in A_n^q, \nu \in B_n^q$ with $\nu \in x$, define $H_n(x,\nu) = \sup\{\gamma_{\vec{z},\vec{\nu}} \mid z_n = x, \nu_n = \nu\} < \kappa_x^n$, where z_n and ν_n denote the last elements of \vec{z} and $\vec{\nu}$ respectively. Let $H_n(x) = \sup_{\nu \in B_n^q, \nu \in x} H_n(x, \nu) < (\kappa_x^n)^+$.

Then q forces that $\langle H_n \mid n < \omega \rangle$ is as desired.

Corollary 7.3. $\langle g_{\beta} | \beta < \mu \rangle$ is a bad scale in V[G]

Proof. $\langle g_{\beta} | \beta < \mu \rangle$ is a scale by the way we defined it and Lemma 7.2, (see for example the arguments in [1]). Also, by Lemma 7.1, if γ is a good point in V[G] for $\langle g_{\beta} | \beta < \mu \rangle$ with cofinality τ with $\omega < \tau < \kappa$, then γ is a good point in V for $\langle g_{\beta}^* | \beta < \mu \rangle$. Finally, the set of bad points S is still stationary in V[G].

We conclude with some questions.

Question 1. What can be said about the tree property at κ in the above construction?

Question 2. Can we use short extenders and collapses to obtain the present construction for $\kappa = \aleph_{\omega}$?

References

- JAMES CUMMINGS AND MATTHEW FOREMAN, Diagonal prikry extensions, J. of Symbolic Logic, 75(4): 1383-1402, 2010.
- [2] JAMES CUMMINGS, MATTHEW FOREMAN, MENACHEM MAGIDOR, Squares, scales and stationary reflection, J. Math. Log., 1(1): 35-98, 2001.
- [3] MOTI GITIK, Prikry-type Forcings, Handbook of Set Theory, Springer 2010.
- [4] MOTI GITIK AND ASSAF SHARON, On SCH and the approachability property, Proc. of the AMS, 136(1):311-320, 2008.
- [5] MOTI GITIK AND MENACHEM MAGIDOR, Extender based forcing, J. Symbolic Logic, 59(2):445-460, 1994.
- [6] MENACHEM MAGIDOR, On the singular cardinals problem I., Israel Journal of Mathematics vol. 28 (1977) pp. 1-31.
- [7] ASSAF SHARON, Weak squares, scales, stationary reflection and the failure of SCH, Ph.D. Thesis, Tel Aviv University 2005.
- [8] DIMA SINAPOVA, Hybrid Prikry forcing, Fundamenta Mathematicae, accepted.