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Abstract. Starting from a supercompact cardinal κ, we build a model, in which κ is
singular string limit, the singular cardinal hypothesis fails at κ and there are no very
good scales at κ. Moreover there is a bad scale at κ, and so weak square fails.

1. Introduction

The Singular Cardinal Problem is the problem to find a complete set of rules for the
behavior of the operation κ 7→ 2κ for singular cardinals κ. One central theme is how
much “reflection-type” properties are consistent with the failure of the singular cardinal
hypothesis (SCH). SCH states that if κ is singular and 2cf(κ) < κ, then κcf(κ) = κ+. In
particular, if κ is strong limit singular, then 2κ = κ+.

Scales are a central concept in PCF theory. Given a singular cardinal κ = supn κn,
where each κn is regular, a scale of length κ+ is a sequence of functions 〈fα | α < κ+〉
in
∏
n κn that is increasing and cofinal with respect to the eventual domination ordering.

A point α < κ+ with cf(α) > ω is good if there is an unbounded A ⊂ α such that
{fβ(n) | β ∈ A} is strictly increasing for all large n. If A is a club in α, then α is very
good. A scale is good, resp. very good, if on a club every point of uncountable cofinality is
good, resp. very good. A scale is bad if it is not good.

Very good scales follow from intermediate square principles, and in turn imply failure
of simultaneous stationary reflection (Cummings-Foreman-Magidor, [2]). Thus the non
existence of a very good scale is a “reflection-type” property, and it has been open whether
it is consistent with the failure of SCH at a singular strong limit cardinal.

Extender based forcing, developed by Gitik and Magidor [5], violates SCH at a singular
cardinal κ while keeping GCH below κ. The set up is to start with a singular κ, such that
κ = supn κn, each κn is a strong cardinal, and then force to add many sequences though κ,
but without adding bounded subsets at κ. In his Ph.D. thesis [7], Assaf Sharon modified
this forcing to construct a model, where SCH fails at κ and there are no very good scales
at κ. In his model, however, bounded subsets of κ are added, and κ is no longer strong
limit. More precisely, only κ0 remains (regular) strong limit.

Another way to violate SCH is via Magidor’s supercompact Prikry forcings, [6]. An
important variation is Gitik-Sharon’s diagonal supercompact Prikry, [4]. In [8], we defined
a forcing notion, called hybrid Prikry, which combines the diagonal supercompact forcing
from Gitik-Sharon [4] and the original extender based forcing. This poset simultaneously
singularizes all cardinals in the interval [κ, κ+ω), for a large cardinal κ, and uses extenders
to add many Prikry sequences to

∏
n κ, so that SCH is violated. Here we define a modified

hybrid Prikry forcing, combining ideas from [8] and the modified extender based forcing
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from Assaf Sharon’s thesis, [7]. We use it to obtain the consistency of not SCH and no
very good scale at a singular strong limit.

Our main forcing does not add bounded subsets of κ, thereby keeping it strong limit.
However, before the main forcing, we need some Laver type preparation, to achieve no
very good scales. Thus we can’t quite keep GCH below κ, but we do have GCH at every
inaccessible α < κ.

Theorem 1.1. Starting from a supercompact, it is consistent that SCH fails at a strong
limit κ, and there is no very good scale at κ.

In our forcing extension, there is also a bad scale:

Theorem 1.2. Starting from a supercompact, it is consistent that SCH fails at a strong
limit κ, there is a bad scale at κ and for all inaccessible cardinals α < κ, 2α = α+.

The existence of a bad scale implies that weak square fails in our model. The failure of
SCH together with a bad scale was already achieved in [4] at ℵω2 . However, there is no
natural way to modify their forcing for ℵω. Our construction gives a different strategy,
leaving the possibility of pushing it down to ℵω open.

A key difference between the original extender based forcing and Assaf Sharon’s version
is that in the latter case forcing with the direct extension order preserves κ+. Similarly,
starting from a supercompact κ, we will define a Prikry type forcing (P,≤,≤∗) with the

key feature that both (P,≤) and (P,≤∗) preserve µ, where µ := (κ+)V
P
.

In section 2 we define the forcing. Preservation of µ is shown in section 3, and the
Prikry lemma is given in section 4. In section 5, we show that SCH fails in the generic
extension. Section 6 has the proof that there is no very good scale in the generic extension,
and in section 7 we define a bad scale.

2. The forcing

Suppose that GCH holds; let κ be supercompact, and let 〈κn | n < ω〉 be an increasing
sequence of strong cardinals above κ. Denote κω = supn κn, µ := κ+ω . For each n < ω, let
Un be a normal measure on Pκ(κn), and let jn := jUn .

Suppose also that UltUn |= κn is jn(µ+)-strong. So for a Un- measure one set of x’s in
Pκ(κn), κnx := o.t.(x) is a µ+ - strong cardinal. Say this is witnessed by jx : V →Mx.

Let x ∈ Pκ(κn) be as above. Let 〈Exα | α < µ+〉 be κnx complete ultrafilters on κnx,
where Exα = {Z ⊂ κnx | α ∈ jx(Z)}. Arguing as in [3] we define a strengthening of
the Rudin-Keisler order: for α, β < µ+, set α ≤Ex β if α ≤ β and there is a function
f : κnx → κnx, such that jx(f)(β) = α. For α ≤Ex β, fix projections πβα : κnx → κnx to
witness this ordering, setting πα,α to be the identity. We do this as in Section 2 of [3] with
respect to κnx, so that we have:

(1) jxπβα(β) = α.
(2) For all a ⊂ µ+ with |a| < κnx, there are unboundedly many β < µ+, such that

α <Ex β for all α ∈ a.
(3) For α < β ≤ γ, if α ≤Ex γ and β ≤Ex γ, then {ν < κnx | πγ,α(ν) < πγ,β(ν)} ∈ Exγ .
(4) If {αi | i < τ} ⊂ α < µ+ with τ < κ, are such that for all i < τ , αi <Ex α,

then there is A ∈ Exα, such that for all ν ∈ A, for all i, j < τ , if αi ≤Ex αj , then
πα,αi(ν) = παj ,αi(πα,αj (ν)).
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2.1. The modules.

Definition 2.1. The poset Qn
x = Qn

x0 ∪Qx1 is defined as follows:
Qn
x1 = {f : µ+ ⇀ κnx | |f | ≤ κnx} and ≤x1 is the usual ordering. Qn

x0 has conditions of the
form p = 〈a,A, f〉 such that:

• a ⊂ µ+, |a| < κnx, for all β ∈ a, β ≤Ex max(a),
• f ∈ Qn

x1, and a ∩ dom(f) = ∅
• A ∈ Exmax a,
• for all α ≤ β ≤Ex γ in a, for all ν ∈ πmax a,γ”A, πγ,α(ν) = πβ,α(πγ,β(ν)).
• for all α < β in a, for all ν ∈ A, πmax a,α(ν) < πmax a,β(ν)

〈b, B, g〉 ≤x0 〈a,A, f〉 if:

(1) b ⊃ a,
(2) πmax bmax a”B ⊂ A,
(3) g ⊃ f .

Define ≤∗x=≤x0 ∪ ≤x1 and for p, q ∈ Qn
x, p ≤x q, if p ≤∗x q or p ∈ Qn

x1, q = 〈a,A, f〉 ∈ Qn
x0

and

(1) p ⊃ f , a ⊂ dom(p)
(2) p(max a) ∈ A
(3) for all β ∈ a, p(β) = πmax a,β(p(max a)).

Definition 2.2. For a condition p = 〈a,A, f〉 ∈ Qn
x0 and ν ∈ A, let p_ν = f ∪

{〈β, πmax a,β(ν)〉 | β ∈ a}. I.e. p_ν is the weakest extension of p in Qn
x1 with ν in its

range.

Note that if g ∈ Qn
x1, with g ≤ p, there is a unique ν ∈ A such that g ≤ p_ν (take

ν = g(max a)).
Finally, for n < ω, denote

Qn
0 := [x 7→ Qn

x0]Un ,Qn
1 := [x 7→ Qn

x1]Un , and Qn := [x 7→ Qn
x]Un .

Since each Qn
x0 is κnx-closed, we have that Qn

0 is κn-closed. Also, for each α = [x 7→
αx]Un < jn(µ+), set Enα = [x 7→ Exαx ]Un . Qn is the extender based module over κn with
respect to 〈Enα | α < jn(µ+)〉 and Cohen parts of size less than or equal to κn.

2.2. The main forcing. For x, y ∈ Pκ(κω), we will denote κx = κ ∩ x and use the
notation x ≺ y to mean x ⊂ y and o.t.(x) < κy. Since on a measure one set, κx is an
inaccessible cardinal, we assume this is always the case. Similarly, for each k, on a measure
one set, for x ∈ Pκ(κk), κ

k
x = o.t.(x) is strong. So we assume this is always the case, too.

Definition 2.3. Suppose we have sets Ai ∈ Ui, Bi ∈ [x 7→ Ex,αx ]Ui where each αx ∈ µ+.
Let [

∏
i≥lAi ×Bi]<ω denote the set of all finite sequences 〈~x, ~ν〉, where for some n,

(1) ~x = 〈xl, ..., xn〉, is such that each xi ∈ Ai and xl ≺ xl+1 ≺ ... ≺ xn,
(2) ~ν = 〈νl, ..., νn〉, is increasing and such that each νi ∈ Bi,
(3) each νi ∈ xi.

For every i, Bi ∈ [x 7→ Ex,αx ]Ui , and ν ∈ Bi as above, fix representative functions
x 7→ νx, such that ν := [x 7→ νx]Ui .
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Definition 2.4. Conditions in P are of the form

p = 〈x0, f0, ..., xl−1, fl−1, Al, Fl, Al+1, Fl+1, ...〉

where l = lh(p) and:

(1) For n < l, xn ∈ Pκ(κn), and for i < n, xi ≺ xn,
(2) For n ≥ l, An ∈ Un, and xl−1 ≺ y for all y ∈ Al.
(3) For n ≥ l, dom(Fn) = An, and for y ∈ An, Fn(y) = 〈an(y), An(y), fn(y)〉, where

an(y) ∈ [µ+]<κ
n
y , An(y) ∈ Ey,max(an(y)).

Denote Bn := [y 7→ An(y)]Un.
(4) For n < l, dom(fn) = Pκ(κn), for every x ∈ Pκ(κn),

fn(x) : [
∏
i≥l

Ai ×Bi]<ω ∩ {〈~z, ~ν〉 | x ≺ ~z} → Qn
x1,

and for 〈~z, ~ν〉 ⊂ 〈~z′, ~ν ′〉, fn(x)(〈~z′, ~ν ′〉) ≤ fn(x)(〈~z, ~ν〉).
(5) For n ≥ l, Fn(y) = 〈an(y), An(y), fn(y)〉, such that:

(a) dom(fn(y)) = [
∏
i>nAi × Bi]

<ω ∩ {〈~z, ~ν〉 | y ≺ ~z} and for each 〈~z, ~ν〉 ∈
dom(fn(y)),

〈an(y), An(y), fn(y)(〈~z, ~ν〉)〉 ∈ Qn
y0,

(b) if 〈~z, ~ν〉 ⊂ 〈~z′, ~ν ′〉, fn(y)(〈~z′, ~ν ′〉) ≤ fn(y)(〈~z, ~ν〉).
(6) For l ≤ n < m, y ∈ An, y′ ∈ Am, y ≺ y′, we have an(y) ⊂ am(y′)

For a condition p as above we will use fpn, x
p
n, n < lh(p) andApn, B

p
n, F

p
n , F

p
n(y) = 〈apn(y), Apn(y), fpn(y)〉, n ≥

lh(p) to denote its components as defined above. Also for n ≥ lh(p), let βpn := [x 7→
max(apn(x))]Un .

We say that q ≤∗ p if lh(q) = lh(p) = l, and

(1) for all n < l, xqn = xpn and for n ≥ l, Aqn ⊂ Apn,
(2) for all n ≥ l, y ∈ Aqn, aqn(y) ⊃ apn(y), πmax(aqn(y),a

p
n(y))

”Aqn(y) ⊂ Apn(y).

For n ≥ l and ~ν ∈
∏
n≤i≤k B

p
i , denote π(~ν) = 〈πβqn,βpn(νn), ..., πβqk,β

p
k
(νk)〉.

(3) for all n < l, ∀Unx, for all 〈~z, ~ν〉 ∈ dom(f qn(x)), f qn(x)(〈~z, ~ν〉) ≤Qnx1 f
p
n(x)(〈~z, π(~ν)〉),

(4) for all n ≥ l, y ∈ Aqn and 〈~z, ~ν〉 ∈ dom(f qn(y)),

〈aqn(y), Aqn(y), f qn(y)(〈~z, ~ν〉)〉 ≤Qny0 〈a
p
n(y), Apn(y), fpn(y)(〈~z, π(~ν)〉)〉.

(5) for all n ≥ l, Aqn ⊂ {x | ν ∈ x → πβqn,βpn(ν) ∈ x}. This is needed to ensure
transitivity of ≤P.

Suppose p has length l, k > l, and 〈~x, ~ν〉 ∈ [
∏
i≥lA

p
i × B

p
i ]<ω; ~x := 〈xl, ..., xk−1〉, ~ν :=

〈νl, ..., νk−1〉. We define the weakest k− l-step extension of p obtained from 〈~x, ~ν〉 denoted
by p_〈~x, ~ν〉 to be the condition

〈xp0, f0, ..., x
p
l−1, fl−1, xl, fl, ..., xk−1, fk−1, Ak, Fk, Ak+1, Fk+1, ...〉,

such that:

(1) for n ≥ k, An = Apn ∩ {y | xk−1 ≺ y},
(2) for n < l, for x ∈ Pκ(κn), and 〈~z, ~δ〉 ∈ dom(fn(x)), fn(x)(〈~z, ~δ〉) = fpn(x)(〈~x, ~ν〉_〈~z, ~δ〉),
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(3) for l ≤ n < k, for x ∈ Pκ(κn) with νx ∈ Apn(x), for all 〈~z, ~δ〉 ∈ dom(fn(x)),

fn(x)(〈~z, ~δ〉) = 〈apn(x), Apn(x), fpn(x)(〈xn+1, ..., xk−1, νn+1, ...νk−1〉_〈~z, ~δ〉)〉_νx;

otherwise, if νx 6∈ Apn(x), for all 〈~z, ~δ〉 ∈ dom(fn(x)), set fn(x)(〈~z, ~δ〉) = ∅.
(4) for n ≥ k and y ∈ An, we have Fn(y) = F pn(y).

We can finally define the full ordering:

Definition 2.5. q ≤ p if q ≤∗ p or for some 〈~y, ~ν〉, we have that q ≤∗ p_〈~y, ~ν〉.

3. Preservation of µ

Define Pn := {p ∈ P | lh(p) = n}. We will show that (P0,≤∗) preserves µ. The idea
will be that for every n, we can regard it as a combination of two subposets, one with
κ++
n -c.c., and the other κn+1-closed. We use this to show that (P0,≤∗) preserves κn for

every n, and then conclude that it must preserve µ. We remark that our arguments can
be adapted to show (Pk,≤∗) preserves µ, for every k < ω.

Definition 3.1. For p, q in P0, we say that p ∼ q if for all k < ω, Bp
k = Bq

k = Bk,
and there are measure one sets Ak ⊂ Apk ∩ A

q
k, such that for all k < ω, x ∈ Ak, 〈~z, ~ν〉 ∈

[
∏
i>k Ai ×Bi]<ω with x ≺ ~z, we have that apk(x) = aqk(x), Apk(x) = Aqk(x), fpk (x)(〈~z, ~ν〉) =

f qk (x)(〈~z, ~ν〉). Define p ≤∼ q if there is p′ ∼ p with p′ ≤ q.

Let P0 � [n, ω) := {〈Apn, F pn , Apn+1, F
p
n+1, ...〉 | p ∈ P0} with the induced ordering from

≤∼ (which we denote the same). Note that 〈P0,≤∗〉 and 〈P0,≤∼〉 are isomorphic.

Proposition 3.2. 〈P0 � [n, ω),≤∼〉 is κn-closed, for all n ≥ 0.

Proof. Suppose that τ < κn and 〈pη | η < τ〉 is a ≤∼-decreasing sequence in P0 � [n, ω).

For each η < δ, let 〈Aη,δk | n ≤ k < ω〉 be measure one sets in Uk, respectively, witnessing

that pδ ≤∼ pη.
For k ≥ n, set Apk = 4Aη,δk = {x | x ∈

⋂
η∈x,δ∈xA

η,δ
k }. Let m̄ < µ+ be above the

supremum of all of the domains of the f
pη
k ’s, i.e.

m̄ > sup
η<τ,k<ω,x∈Apηk ,〈~z,~ν〉∈dom(f

pη
k (x))

dom(f
pη
k (x)(〈~z, ~ν〉)).

Inductively on k, for all x ∈ Apk, set

apk(x) =
⋃

η∈x∩τ
a
pη
k (x) ∪

⋃
n≤m<k,w∈Apm,w≺x

apm(w) ∪ {m},

where m is a maximal element above m̄. Then let Apk(x) =
⋂
η∈x∩τ π

−1
η (A

pη
k (x)), where

πη = πmax(apk(x)),max(a
pη
k (x)).

Now let B′i := [y 7→ Api (y)]Ui . For all 〈~z, ~ν〉 ∈ [
∏
i>k A

p
i ×B′i]<ω with x ≺ ~z, define

fpk (x)(〈~z, ~ν〉) =
⋃

η∈x∩τ
f
pη
k (x)(〈~z, πη(~ν)〉),

where πη is the corresponding pointwise projections from the maximal coordinates of p to
the maximal coordinates of pη.

We claim that p is as desired. For if η < τ , for k ≥ n, let Ak = Apk ∩ {x | η ∈ x} ∩ {x |
ν ∈ x→ πβpk ,β

pη
k

(ν) ∈ x}. Then 〈Ak | k ≥ n〉 witness that p ≤∼ pη.
�
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For n > 0 and p ∈ P0, let πn(p) = 〈Ap0, F
p
0 , A

p
1, F

p
1 , ...A

p
n−1, F

p
n−1〉. Set P0n := {πn(p) |

p ∈ P0} with the natural induced ordering from ≤∗.

Proposition 3.3. For all n ≥ 0, P0n+1 has the κ++
n c.c.

Proof. By induction on n. Suppose for contradiction that {πn+1(pη) | η < κ++
n } is an

antichain in P0n+1. By strengthening each pη if necessary, we may assume that the part
above n is the same, i.e. for all i > n, [F

pη
i ]Ui = [Fi]Ui for all η. For i > n, denote

[Fi]Ui := 〈a∗i , Bi, f∗i 〉, and let αi = max(a∗i ). Then each Bi ∈ Ei,αi . For m > n, set
im := jEn+1,αn+1

◦ jn+1 ◦ ...jEm,αm ◦ jm.

Fix x ∈ Apηn . We will define functions fηx,m for n < m as follows.

• Ifm = n+1, for ν ∈ Bn+1, let fηx,ν,n+1 := [z 7→ f
pη
n (x)(〈z, ν〉)]Un+1 . |fpηn (x)(〈z, ν〉)| ≤

κnx, so |fηx,ν,n+1| ≤ κnx. Then let fηx,n+1 := [ν 7→ fηx,ν,n+1]En+1,αn+1
. Again, we have

that |fηx,n+1| ≤ κnx
• If m = n+ 2, for ν ∈ Bn+1, y ∈ A

pη
n+1, δ ∈ Bn+2, with ν ∈ y, let,

– fηx,ν,y,δ := [z 7→ f
pη
n (x)(〈y, z, ν, δ〉)]Un+2 ;

– fηx,ν,y := [δ 7→ fηx,ν,y,δ]En+2,αn+2
;

– fηx,ν := [y 7→ fηx,ν,y]Un+1 ;
– fηx,n+2 := [ν 7→ fηx,ν ]En+1,αn+1

.

As before, |fηx,n+2| ≤ κnx.
• ...

Continue in a similar fashion for all m > n.

Then each fηx,m is a partial function from im(µ+) to κnx of size less than or equal to κnx.
Define a partial function F ηm : Pκ(κn)× im(µ+) ⇀ {Y } ∪ κ by:

F ηm(x, α) :=

{
Y if α ∈ im(a

pη
n (x))

fηx,m(α) if α ∈ dom(fηx,m)
Let F η be the function given by F η(m,x, α) = F ηm(x, α). This is a function of size

less than κ+n . So, by applying the ∆-system lemma, we get an unbounded I ⊂ κ++
n ,

such that 〈F η | η ∈ I〉 forms a ∆ system, and the functions have the same value on
the kernel. Note that this implies that for all η, δ in I and for all n < m, x ∈ Pκ(κn),
im(a

pη
n (x)) ∩ dom(f δx,m) = ∅.

By the inductive hypothesis, if n > 0, P0n has the κ++
n−1-c.c. So let η, δ be distinct points

in I, such that if n > 0, πn(pη) and πn(pδ) are compatible. We will construct p ∈ P0, such
that πn+1(p) is a common extension of of πn+1(pη) and πn+1(pδ).

Let m̄ < µ+ be above the supremum of the domains of f
pη
k (x)(h) and fpδk (x)(h), for

k ≤ n, x ∈ Apηk ∩A
pδ
k , h ∈ dom(f

pη
k (x)) ∩ dom(fpδk (x)). Also, let r be a common extension

of πn(pη) and πn(pδ), such that for all k < n, x ∈ Ark, ark(x) = a
pη
k (x) ∪ apδk (x) ∪ c, where

c ⊂ µ+ \ m̄. We will define p so that p � n ∼ r.
For i < n, set Api = Ari , for x ∈ Api , set api (x) = ari (x), Api (x) = Ari (x). And then

Bp
i = Br

i .
Also set Apn = Arn ⊂ A

pη
n ∩Apδn . For x ∈ Apn, let

apn(x) = a
pη
n (x) ∪ apδn (x) ∪

⋃
i<n,w∈Api ,w≺x

api (w) ∪ {m′},
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where m′ > m̄ is a maximal element in the extender ordering. Then, set

Apn(x) = π−1m′,mη(A
pη
n (x)) ∩ π−1m′,mδ(A

pδ
n (x)),

where mη,mδ are the maximal elements of a
pη
n (x) and apδn (x) respectively. Finally, for all

m > n, let
fx,m = fηx,m ∪ f δx,m.

This is a well-defined function because the values on the kernel of the ∆ system obtained
above are the same.

Denote:

• fx,m = [ν 7→ fmn (x)(ν)]En+1,αn+1
;

• fmn (x)(ν) = [y 7→ fmn (x)(ν)(y)]Un+1 ;
• fmn (x)(ν)(y) := [δ 7→ fmn (x)(ν)(y)(δ)]En+2,αn+2

;

• fmn (x)(ν)(y)(δ) := [z 7→ fmn (x)(ν)(y)(δ)(z)]Un+2 ;
• ... and so on until we reach m.

Then we have that:
∀∗En+1,αn+1

νn+1∀∗Un+1
yn+1∀∗En+2,αn+2

νn+2∀∗Un+2
yn+2...∀∗Em,αmνm∀

∗
Um
ym

(†) : fmn (x)(νn+1)(yn+1)...(νm)(ym) =
f
pη
n (x)(〈yn+1, ..., ym, νn+1, ..., νm〉) ∪ fpδn (x)(〈yn+1, ..., ym, νn+1, ..., νm〉)

and
dom(fmn (x)(νn+1)(yn+1)...(νm)(ym)) ∩ apn(x) = ∅.

Then by taking diagonal intersection, for all x ∈ A
pη
k ∩ A

pδ
k , for all m > n, we have

measure one sets Ax,mn+1, A
x,m
n+2, ..., A

x,m
m and Bx,m

n+1, B
x,m
n+2, ..., B

x,m
m , where each Ax,mi ∈ Ui,

Bx,m
i ∈ Ei,αi , such that for all 〈~y, ~ν〉 ∈ [

∏
n<i≤mA

x,m
i ×Bx,m

i ]<ω with x ≺ ~y, we have that
the above equality holds.

We illustrate how these sets are defined for m = n+ 2:

• Bn+1 = {ν | ∀∗y,∀∗δ, ∀∗z(†) holds for 〈y, z, ν, δ〉}.
• For every ν ∈ Bn+1, let Aν ∈ Un+1 witness it.

Set An+1 = 4Aν = {y | y ∈
⋂
ν∈y Aν} ∈ Un+1;

• For all ν ∈ Bn+1, for all y ∈ Aν , let Bν,y ∈ En+2,αn+2 witness it.
Set Bn+2 =

⋂
ν,y Bν,y ∈ En+2,αn+2 ;

• For all ν ∈ Bn+1, y ∈ Aν , and δ ∈ Bν,y, let Aν,y,δ ∈ Un+2 witness it.
Set An+2 := 4Aν,y,δ = {z | z ∈

⋂
δ∈z,y≺z,ν∈y Aν,y,δ} ∈ Un+2;

For such x, for i > n, let

Axi =
⋂

i≤m<ω
Ax,mi , Bx

i =
⋂

i≤m<ω
Bx,m
i .

Then set Ai = 4Axi , B
p
i =

⋂
x∈Pκ(κn)B

x
i .

For n < i < ω, let Api = Ai ∩ {x | ν ∈ x→ (πβpi ,β
pη
i

(ν) ∈ x, πβpi ,β
pδ
i

(ν) ∈ x)}.
For i ≤ n, let F pi (y) be obtained from F ri (y), restricted to Bp

i ’s.
For x ∈ Apn, m > n, and 〈~y, ~ν〉 in [

∏
i>nA

p
i ×B

p
i ]<ω with x ≺ ~y, let

fpn(x)(〈yn+1, ..., ym, νn+1, ..., νm〉) = fmn (x)(νn+1)(yn+1)...(νm)(ym).

Then p is as desired.
�
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Using a similar, and actually simpler argument, we get:

Lemma 3.4. Both (P0,≤∗) and (P,≤) have the µ+-c.c.

Lemma 3.5. Let n > 0. (P0,≤∗) preserves cardinals in the interval [κ++
n , κn+1].

Proof. Suppose otherwise. Let n be such that some regular V -cardinal τ ∈ [κ++
n , κn+1] is

collapsed. Let p ∈ P0, and λ < τ be such that p 
P0 ḣ : λ → τ is onto. Fix α < λ. We
will define θ ≤ κ++

n and 〈pη, αη | η < θ〉 by induction of η, such that:

(1) pη ∈ P0, pη ≤∗ p, αη ∈ τ ,
(2) 〈pη � [n+ 1, ω) | η < θ〉 is ≤∼-decreasing,

(3) pη 
P0 ḣ(α) = αη.

Let α0 and p0 ≤∗ p be such that p0 
P0 ḣ(α) = α0. Suppose we have defined pξ, αξ,
for all ξ < η. If η = κ++

n , set θ = η and stop. Otherwise let q ≤∗ p be such that
q � n+ 1 = p � n+ 1 and q � [n+ 1, ω) ≤∼ pξ � [n+ 1, ω) for all ξ < η. We can find such a
condition because 〈P0 � [n+ 1, ω),≤∼〉 is κn+1-closed.

Suppose that there is r ∈ P0, r ≤∗ q and β /∈ {αξ | ξ < η}, such that r 
 ḣ(α) = β.
Then let αη = β and pη = r. Otherwise, set θ = η, qα := q, and stop.

Claim 3.6. θ < κ++
n .

Proof. Otherwise 〈πn+1(pη) | η < κ++
n 〉 is an antichain in P0n+1 of size κ++

n . Contradiction
with Proposition 3.3.

�

It follows that each qα is defined. Note that for all α, qα � n + 1 = p � n + 1. Let
Xα = {αη | η < θ}. Then qα 
 ḣ(α) ∈ Xα. Doing this inductively on α < λ, we arrange
that 〈qα � [n+ 1, ω) | α < κ〉 is ≤∼-decreasing. Finally let X =

⋃
α<λXα, and let q ≤∗ p

be such that for all α < λ, q � [n+ 1, ω) ≤∼ qα � [n+ 1, ω) and q � n+ 1 = p � n+ 1. Then

q 
P0 ran(ḣ) ⊂ X, but |X| < τ . Contradiction. �

Corollary 3.7. P0 preserves µ.

For conditions p, q ∈ P, we say that p and q are tail equivalent, if for some large enough
n, p � [n, ω) ∼ q � [n, ω), as defined earlier, restricted to P � [n, ω). In this case we write
p ∼t q. Denote the tail-equivalence class of p, by t(p) := {q | p ∼t q}.

Definition 3.8. Let D := {t(p) | p ∈ P} with the ordering t(p) ≤D t(q) if for some n,
p � [n, ω) ≤∼ q � [n, ω).

By considering the map p 7→ t(p), we get the following:

Proposition 3.9. Both P and P0 project to D.

Proposition 3.10. Suppose that H is D-generic, G0 is P0/H-generic, and p ∈ P/H.
Then there is some n, such that 1_p � [n, ω) ∈ G0.

Lemma 3.11. Let H be D-generic. P/H has the µ-c.c.

Proof. Suppose {pη | η < µ} are conditions in P/H. I.e. for each η, t(pη) ∈ H. By passing
to an unbounded subset of µ, we may assume that there is n̄ < ω, and ~x of length n̄, such
that all conditions have length n̄ and Prikry stem ~x. Let G0 be P0/H-generic. Then for
all η, there is some nη > n̄, such that 1_pη � [nη, ω) ∈ G0.

8



Since in V [G0], µ is a regular cardinal, there is some unbounded I ⊂ µ, such that for
all η ∈ I, nη = n. Now run a ∆-system argument for {pη � n | η ∈ I} in V [G0]. This
is similar (and actually simpler) to what was done in Proposition 3.3. Then we can find
η < δ, in I, such that pη � n, pδ � n have a common extension in P � n. Let r be such
an extension, and let q ∈ P � [n, ω) be a common extension of pη � [n, ω) and pδ � [n, ω).
Then r_q is a common extension of pη, pδ.

�

Corollary 3.12. P preserves µ.

4. The Prikry lemma

First we show the diagonal lemma:

Lemma 4.1. Suppose that p is a condition of length l and for all 〈x, ν〉 ∈ Apl × B
p
l with

ν ∈ x, we have px,ν ≤∗ p_〈x, ν〉. Suppose also that:

(1) There are 〈βn | l < n < ω〉, such that every β
px,ν
n ≤En βn, and for all y ∈ Aql , for

all h, with y ≺ h,

〈fpx,νl (y)(πx,ν(h)) � dom(f
px,ν
l (y)(πx,ν(h))) \ apl (y) | ν ∈ x, x ≺ y〉

are pairwise compatible, where πx,ν is the projection from the βn’s to the βpx,νn ’s.
(2) 〈px,ν � [l + 1, ω)〉 are ≤∼ -pairwise compatible.

Then there is a direct extension q ≤∗ p, such that if r is a nondirect extension of q, then
for some x, ν, we have that r ≤ px,ν . Moreover, we can choose q, so that for all x ∈ Aql ,
aql (x) = apl (x).

Proof. For simplicity assume that lh(p) = 1. Denote px,ν = 〈x0, fx,ν0 , x, fx,ν1 , Ax,ν2 , F x,ν2 , ...〉,
and for n > 1, F x,νn (y) = 〈ax,νn (y), Ax,νn (y), fx,νn (y)〉. By taking diagonal intersections,
by item (2), we can assume that for all n > 1, for all ν ∈ x, δ ∈ w, for all y ∈ Apn
with x ≺ y, z ≺ y and for all h with y ≺ h, 〈aw,δn (y), Aw,δn (y), fw,δn (y)(π1(h))〉 and
〈ax,νn (y), Ax,νn (y), fx,νn (y)(π2(h))〉 are pairwise compatible, where π1 and π2 project to the
maximal coordinates of pw,δ and px,ν , respectively, from some coordinate above both.

For every ν, we have that Bν := {x ∈ Ap1 | νx ∈ A
p
1(x)} ∈ U1. Set Aq1 = 4νBν . For

y ∈ Aq1, set aq1(y) = ap1(y), Aq1(y) = Ap1(y). For n > 1, let A′n = 4Ax,νn := {z | z ∈⋂
x≺z,ν∈xA

x,ν
n }. For n > 1 and y ∈ A′n, set:

(1) aqn(y) ⊃
⋃
x≺y,ν∈x a

x,ν
n (y), and

(2) Aqn(y) =
⋂
x≺y,ν∈x π

−1
max(aqn(y)),max(ax,νn (y))

”Ax,νn (y).

This is possible since there is a maximal element for the a’s unboundedly often. And by
choosing the aqn’s inductively for n, we maintain the last item of 2.4. Then, for n > 1, let
Aqn = A′n ∩ {x | ν ∈ x→ πβqn,βpn(ν) ∈ x}.
For every 〈x, ν〉 and h ∈ [

∏
i>1A

x,ν
i ×B

x,ν
i ]<ω, let πx,ν,p(h) be the corresponding pointwise

projection of h from the maximal coordinates of px,ν to p. Let πq,x,ν(h) be the projection
from the maximal coordinates of q to px,ν , and let πq,p(h) be the projection from the
maximal coordinates of q to p.

Since every px,ν ≤ p, let Ax,ν0 ∈ U0 be such that for all y ∈ Ax,ν0 , for all h ∈ [
∏
i>1A

x,ν
i ×

Bx,ν
i ]<ω with y ≺ h, fx,ν0 (y)(h) ≤ fp0 (〈x, ν〉_πx,ν,p(h)). For all y ∈ Pκ(κ0), and x ∈ Aq1,

ν ∈ Bq
1 = Bp

1 with ν ∈ x, set f q0 (y)(〈x, ν〉) = fp0 (y)(〈x, ν〉), and
9



• if y ∈ Ax,ν0 , set f q0 (y)(〈x, ν〉_h) = fx,ν0 (πq,x,ν(h)),
• otherwise, set f q0 (y)(〈x, ν〉_h) = fp0 (y)(〈x, ν〉_πq,p(h)).

For all y ∈ Aq1, for each h with y ≺ h, set

f q1 (y)(h) =
⋃

x,ν:ν∈x,x≺y
fx,ν1 (y)(πq,x,ν(h)) � dom(fx,ν1 (y)(πq,x,ν(h))) \ ap1(y).

Then set F q1 (y) = 〈aq1(y), Aq1(y), f q1 (y)〉.
For n > 1 and y ∈ Aqn, set f qn(y)(h) =

⋃
x≺y,ν∈x f

x,ν
n (y)(πq,p(h)) and F qn(y) = 〈aqn(y), Aqn(y), f qn(y)〉.

Then q is as desired.
�

Corollary 4.2. Suppose that p is a condition, D is an open dense set, and n > lh(p).
Then there is a condition q ≤∗ p such that for all r ≤ q with length n, if there is r′ ≤∗ r
in D, then r is in D.

Proof. By induction on n− l. If n = lh(p)+1, the result follows from the Diagonal lemma.
Suppose n > lh(p) + 1. For every 〈x, ν〉, such that p_〈x, ν〉 is defined, by the inductive
assumption let px,ν ≤∗ p_〈x, ν〉 be such that for all r ≤ px,ν with length n, if there is
r′ ≤∗ r in D, then r is in D.

Defining these condition inductively, we arrange that they satisfy the assumptions of
the diagonal lemma. Apply the diagonal lemma to the conditions px,ν and p to get q ≤∗ p,
such that q_〈x, ν〉 ≤∗ px,ν , for all x, ν. Then q is as desired. For if r ≤ q is with length n,
let x, ν be such that r ≤ px,ν . Now, if r′ ≤∗ r is in D, then by the way we chose px,ν , it
follows that r is in D.

�

Remark 1. We can define q as above so that for all l ≤ k < n and x ∈ Aqk, a
p
k(x) = aqk(x).

That is because when running the argument above, by induction, we may assume that
for all l < k < n, for all x, ν and y ∈ Apx,νk , a

px,ν
k (y) = apk(y). Then, as in the proof of

the Diagonal lemma, when diagonalizing over the px,ν ’s we get that for all l ≤ k < n and
x ∈ Aqk, a

q
k(x) = apk(x).

Lemma 4.3. (Prikry lemma) Suppose that D is an open dense set and p is a condition
with length l. Then there is some n and q ≤∗ p, such that for all ~x, ~ν of length n, such
that q_〈~x, ~ν〉 is defined, we have that q_〈~x, ~ν〉 ∈ D.

Proof. First by shrinking measure one sets, we may assume that for some fixed n, for all
r ≤ p of length n+ l, there is some r′ ≤∗ r such that r′ ∈ D. Let q ≤∗ p be given by the
above corollary applied to D. Then every n-step extension of q is in D.

�

Lemma 4.4. For every p ∈ P and formula φ, there is q ≤∗ p, such that q decides φ.

Proof. Apply the Prikry lemma for the set {q | q ‖ φ} to find p′ ≤ p and n, such that every
n-step extension of p′ is in D′. Then by shrinking measure one sets, in a rather standard
way, we obtain q ≤∗ p′, such that all n-step extensions of q decide φ the same way. Then
q decides φ.

�

Corollary 4.5. P does not add bounded subsets of κ

10



Proof. This follows from the Prikry property and since 〈P,≤∗〉 is κ-closed. �

Corollary 4.6. P preserves cardinals up to and including κ.

5. The generic extension

Prepare the ground model V , such that the supercompactness of κ is preserved by
forcing with P0. Since P0 is κ0-closed, and so does not add subsets of κ, by starting with
a model of GCH, we have that in V , 2τ = τ for all inaccessible τ < κ. Also, in V , GCH≥κ
holds.

Let G be P-generic. Let 〈xn | n < ω〉 be the diagonal supercompact Prikry sequence
added by G. Then

⋃
n xn = κω and V [G] |= (∀i < ω) cf(κi) = ω and µ = κ+. Next we

show that the forcing blows up the powerset of κ.

Lemma 5.1. Suppose n < ω, α < µ+, and p is such that n ≥ lh(p) and for all y ∈ Apn, α ∈
apn(y). Then Dn,α := {q | lh(q) > n, (∃β := [x 7→ βx]Un)(∀Unx)(∀h ∈ dom(fpn(x)))fpn(x)(h)(α) =
βx} is dense below p.

Proof. Let q ≤ p and lh(q) > n. Say q ≤∗ p_〈~x, ~ν〉, and let ν is the n− lh(p) - th element
of the sequence ~ν. Then let β := π[x 7→max(apn(x))]Un ,jn(α)

(ν). Denote β = [x 7→ βx]Un . Then

by definition of the Q-modules, we have that for Un-almost all x, for all h ∈ dom(f qn(x)),
f qn(x)(h)(α) = βx = πmax(apn(x),α)

(νx).
�

For p in Dn,α, define gpn(α) = β, where β witnesses that p is in that set. Let

F :=
⋃

p∈G,n≥lh(p),y∈Apn

apn(y).

Note that by genericity of the Prikry sequence and definition of P, this is the same as
taking F =

⋃
p∈G,n≥lh(p) a

p
n(xn). Define g∗n : F → κn by g∗n(α) = gpn(α) for some p in

G ∩Dn,α, if such exists, and 0 otherwise.

Lemma 5.2. F is unbounded in µ+

Proof. Let α < µ+. We claim that the set Dα := {p | (∃α′ > α)(∃i ≥ lh(p))(∀y ∈ Api )α′ ∈
api (y)} is dense. Let p be given. Since:

β0 := sup
n≥lh(p),y∈Apn,h∈dom(fpn(y))

dom(fpn(y)(h)) < µ+,

we have that β := max(β0, α) < µ+. Take α′ with β < α′ < µ+. Now we can extend p to
a condition q, so that for some n > lh(q), for all y ∈ Aqn, we have that α′ ∈ aqn(y) �

Remark 2. By a similar argument, we get that F ∩ µ is unbounded in µ.

Lemma 5.3. If α < β are both in F , then for all large n, g∗n(α) < g∗n(β).

Proof. Let p1, p2 in G witness that α, β ∈ F . We can find a common extension p ∈ G,
such that for all n ≥ lh(p), for all y ∈ Apn, {α, β} ⊂ apn(y). We will show that for all
n ≥ lh(p), g∗n(α) < g∗n(β). To this end, let q ∈ G be such that q ≤ p and lh(q) > n.
Let q ≤∗ p_〈~x, ~ν〉, and let ν is the n − lh(p) - th element of the sequence ~ν. Then let
δ := π[x7→max(apn(x))]Un ,jn(α)

(ν) and δ′ := π[x 7→max(apn(x))]Un ,jn(β)
(ν). Then by definition of

the Q-modules, we have that for Un-almost all x, for all h ∈ dom(f qn(x)), f qn(x)(h)(α) =
δx < δ′x = f qn(x)(h)(β). So, g∗n(α) = δ < δ′ = g∗n(β).

11



�

We have that every g∗n has range κn. Next we use the genericity of 〈xn | n < ω〉 to
define functions with ranges in κnxn := |xn|. Now, for all η, let F ηn be the function such
that [F ηn ]Un = η. In V [G], define functions 〈tα | α < µ+〉 in

∏
n κ

n
xn by

tα(n) := F g
∗
n(α)

n (xn).

Then 〈tα | α ∈ F 〉 are increasing sequences in
∏
n κ

n
xn mod finite.

Corollary 5.4. V [G] |= 2κ = µ+.

6. No very good scale

In this section we show that there is no very good scale at κ in V [G]. Suppose for
contradiction, that in V [G], 〈fα | α < µ〉 is a very good scale in some product

∏
n τn, of

regular cardinals with supremum κ. For every n there is some n′, such that τn < κxn′ .
Suppose for simplicity that n′ = n. The general case is similar. Also suppose for simplicity
that all of this is forced by the empty condition.

Proposition 6.1. For all α < µ and p ∈ P0, there is q ≤∗ p, such that every n + 1-step
extension of q decides a value of ḟα(n), and such that for all k ≤ n, x ∈ Aqk, aqk(x) = apk(x).

Proof. Let D := {q | ∃γ(q 
 ḟα(n) = γ)}; this is clearly a dense open set. Then by
Corollary 4.2, we get q ≤∗ p such that for all r ≤ q with length n + 1, if there is r′ ≤∗ r
in D, then r is in D.

Claim 6.2. For all r ≤ p with lh(r) = n+ 1, there is r′ ≤∗ r with r′ ∈ D.

Proof. Fix such r; say x := xrn. Then r 
 ḟα(n) < κx. Apply the Prikry property to

“ḟα(n) = γ”, for all γ < κx, to construct a ≤∗-decreasing sequence 〈rγ | γ < κx〉 of direct
extensions of r, deciding these formulas. Then let r′ be stronger than each rγ ; r′ ∈ D.

�

It follows that every r ≤ q with length n + 1 is in D. Also, by Remark 1, for all
k ≤ n, x ∈ Aqk, a

q
k(x) = apk(x). �

Remark 3. Since (P,≤∗) is κ0-closed, the above proposition also works for functions in∏
n κ

+
xn ,
∏
n κ

n
xn ,
∏
n(κnxn)+, etc. (recall κnx = |x| for x ∈ Pκ(κn))

Now let H be D-generic induced from G, and let G0 be P0/H-generic over V . Since
P/H has the µ-chain condition there is a club subset of µ, E ∈ V [H], such that every
point in E is very good, and of course E remains a club in V [G0].

For two functions f, g, we will write f <n g to denote that for all k ≥ n, f(k) < g(k).

Lemma 6.3. In V [G0], there is n < ω, and a < κ-club C ⊂ µ, such that for all α < β in

C, there is p ∈ G0, such that p 
P ḟα <n ḟβ.

Proof. For every δ < µ with ω < cfV (δ) = cfV [G0](δ) < κ, let Yδ ∈ V be any club in δ of

order type cfV (δ). Enumerate PV (Yδ) by {Cδ,i | i < 2cf(δ)}. Since κ is strong limit, we

have that 2cf(δ) < κ. So, by applying the Prikry property, we can produce a condition pδ
of length 0, such that for each i, and n < ω, pδ decides whether Cδ,i and n witness very
goodness of δ. By density, we choose each pδ ∈ G0. By assumption, for club many δ’s
there is some i, n such that Cδ,i and n witness very goodness.
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Let j : V [G0] → M be a µ-supercompact embedding with critical point κ. Set ρ :=
sup j”µ. Then by elementarity, there is a condition p∗ ∈ j(G0), n < ω, and C∗ ∈ M of
order type cfM (ρ) = µ, such that p∗ forces that C∗, n witness that ρ is very good. Let
C := {γ < µ | j(γ) ∈ C∗}.

Then C is < κ club in µ. Now suppose that α < β are in C and q ∈ G0. Let
r∗ ≤∗ j(q), p∗ be in j(G0). Then r∗ 
j(P) j(ḟ)j(α) <n j(ḟ)j(β) (since p∗ forces it). So, by

elementarity, there is a condition p ∈ G0, p ≤∗ q, such that p 
P ḟα <n ḟβ.
�

Let Ċ be a P0 name for a club as above and suppose that the empty condition forces
(over P0) that Ċ, n are as above. I.e. for all p ∈ P0, and α < β < µ, if p 
P0 α, β ∈ Ċ,

then there is q ≤∗ p, such that q 
P ḟα <n ḟβ.

Lemma 6.4. For all τ < κω and p ∈ P0, there is X ⊂ µ in V with |X| = τ and r ≤∗ p,

such that r 
P0 X ⊂ Ċ.

Proof. Let m be such that τ < κm. We use the following claim.

Claim 6.5. For all α < µ, for all p, there is β > α and q ≤∗ p, such that πm(q) = πm(p)

and q 
P0 β ∈ Ċ.

Proof. Construct ≤∗-decreasing sequence of conditions 〈qk | k < ω〉 and an increasing

sequence of points 〈αk | k < ω〉, such that α0 = α, every qk 
P0 Ċ ∩ (αk, αk+1] 6= ∅,
and πm(qk) = πm(p). We can do this by standard arguments since P0m has the κ++

m−1-
c.c. and P � [m,ω) is κm-closed. Then let β = supk αk and let q ≤∗ qk for all k. Then

q 
P0 β ∈ Ċ. �

Fix p. We will construct a sequence 〈βη | η < τ〉 and 〈qη | η < τ〉, such that for each η,
πm(qη) = πm(p) and 〈qη � [m,ω) | η < τ〉 is ≤∼-decreasing.

Suppose we have defined the sequences up to η. Let q ≤∗ p be such that πm(q) = πm(p)
and q � [m,ω) ≤∼ qξ � [m,ω) for all ξ < η. Let qη ≤∗ q, βη > supξ<η βξ be given by the
claim applied to q and supξ βξ.

Finally let r ≤∗ p be such that πm(r) = πm(p) and r � [m,ω) ≤∼ qη � [m,ω) for all

η < τ . Set X = {βη | η < τ}. Then r 
P0 X ⊂ Ċ. �

Apply the above lemma to find a condition r ∈ P0 and X ⊂ µ of size κ++
n , such that

r 
P0 X ⊂ Ċ. For every α ∈ X, let pα ≤∗ r be given by Proposition 6.1. I.e. every

q ≤ pα with length n + 1 decides ḟα(n), and for all k ≤ n, x ∈ Aqk, a
pα
k (x) = ark(x).

P � [n + 1, ω) is κn+1-closed and |X| = κ++
n . So by defining the pα’s inductively, we

arrange that 〈pα � [n+ 1, ω) | α ∈ X〉 is ≤∼-decreasing.
Consider {πn+1(pα) | α ∈ X} ⊂ P0n+1. By the same ∆-system argument as in Propo-

sition 3.3, there is an unbounded X ′ ⊂ X, such that {πn+1(pα) | α ∈ X ′} are pairwise
compatible. But that means {pα | α ∈ X ′} are pairwise compatible with respect to ≤∗.
For all α, β in X ′, let pα,β ≤∗ pα, pβ be such that pα,β 
P ḟα <n ḟβ. Let rα,β ≤ pα,β be
of length n + 1 and of the form rα,β = p_α,β〈~x, ~ν〉, for some ~x, ~ν. But then since for all

k ≤ n, x ∈ Aqk, a
pα
k (x) = ark(x), we have that there are ~xα,β, ~να,β, such that:

• rα,β ≤∗ p_α 〈~xα,β, ~να,β〉
• rα,β ≤∗ p_β 〈~xα,β, ~να,β〉
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Denote hα,β := 〈~xα,β, ~να,β〉. The number of possible hα,β’s is κn, and |X ′| = κ++
n = (2κn)+.

By Erdos-Rado, the function 〈α, β〉 7→ hα,β has a homogenous set Y is size κ+n . Let
〈~x, ~ν〉 = hα,β for all α, β in Y .

For all α ∈ Y , let γα < κ be such that, p_α 〈~x, ~ν〉 
 ḟα(n) = γα. (Here we use that pα is as
in the conclusion of Proposition 6.1.) Suppose that α < β are both in Y . Since rα,β ≤ pα,β
and pα,β 
 ḟα <n ḟβ, we have that rα,β 
 ḟα(n) < ḟβ(n). But rα,β ≤∗ p_α 〈~x, ~ν〉, p_β 〈~x, ~ν〉,
so γα < γβ.

But then {γα | α ∈ Y } is a subset of κ of size κ+n . Contradiction.

7. Bad scale

Recall that we prepared the ground model V , so that the supercompactness of κ is
preserved by forcing with P0. In V , fix a scale 〈g∗α | γ < µ〉 ∈ V in

∏
n κ

+
n . Set S := {γ <

µ | ω < cf(γ) < κ, γ is a bad point for 〈g∗α | γ < µ〉}. By standard reflection arguments
S is stationary in V . Also, since P0 preserves µ and is κ+-closed, 〈g∗α | γ < µ〉 remains a
bad scale after forcing with P0. More precisely, if G0 is P0-generic, a point of cofinality
less than κ is bad in V iff it is bad in V [G0], and the set S is stationary in V [G0] (since κ
remains supercompact in V [G0]).

So if H is D-generic, since P0 projects to D, we have that S is stationary in V [H]. Then
by the µ-chain condition of P/D, S is stationary after forcing with P.

The next lemma will be used to show that a witness of goodness in the generic extension
gives rise to a witness of goodness in the ground model. In particular, if a point is bad in
V , then it is bad in V [G].

Lemma 7.1. Let τ < κ be a regular uncountable cardinal in V (and so in V [G]), and
suppose V [G] |= A ⊂ ON, o.t.(A) = τ . Then there is a B ∈ V such that B is an unbounded
subset of A.

Proof. Let p ∈ G, p 
 ḣ : τ → Ȧ enumerate Ȧ. By the Prikry lemma, define a ≤∗-
decreasing sequence 〈pα | α < τ〉, such for every α < τ , pα ≤∗ p and there is nα < ω,

such that every q ≤ pα with length nα decides ḣ(α). Then there is an unbounded I ⊂ τ
and n < ω such that for all α ∈ I, n = nα. Let p′ be stronger than all pα for α < τ . By
appealing to density, we may assume that p′ ∈ G. Let q ≤ p be a condition in G with
length n, and set B = {γ | (∃α ∈ I)q 
 ḣ(α) = γ}. Then B is as desired.

�

Note that the above lemma already implies that the approachability property fails in
V [G], and so weak square also fails.

Recall that for every x ∈ Pκ(κn), κnx denotes |x|, which is a cardinal on a Un-measure
one set. Also, ∀n < ω, ∀η < κ+n , we fixed F ηn : Pκ(κn) −→ V , such that [F ηn ]Un = η. We
may assume that ∀xF ηn (x) < (κnx)+. Define in V [G], 〈gβ | β < µ〉 in

∏
n(κnxn)+ by:

gβ(n) = F
g∗β(n)
n (xn)

To show that this is a scale we need the following bounding lemma.

Lemma 7.2. Suppose that in V [G], h ∈
∏
n(κnxn)+. Then there is a sequence of functions

〈Hn | n < ω〉 in V , such that dom(Hn) = Pκ(κn), Hn(x) < (κnx)+ for all x, and for all
large n, h(n) ≤ Hn(xn).
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Proof. Let p force that ḣ ∈
∏
n(κnẋn)+. For simplicity, say lh(p) = 0.

Fix n < ω. Let pn ≤∗ p be such that every n + 1-step extension decides ḣ(n). Let
q ≤∗ pn, for all n. For all ~z, ~ν of length n+1, such that q_〈~z, ~ν〉 is defined, let γ~z,~ν be such

that q_〈~z, ~ν〉 
 ḣ(n) = γ~z,~ν . For x ∈ Aqn, ν ∈ Bq
n with ν ∈ x, define Hn(x, ν) = sup{γ~z,~ν |

zn = x, νn = ν} < κnx, where zn and νn denote the last elements of ~z and ~ν respectively.
Let Hn(x) = supν∈Bqn,ν∈xHn(x, ν) < (κnx)+.

Then q forces that 〈Hn | n < ω〉 is as desired.
�

Corollary 7.3. 〈gβ | β < µ〉 is a bad scale in V [G]

Proof. 〈gβ | β < µ〉 is a scale by the way we defined it and Lemma 7.2, (see for example
the arguments in [1]). Also, by Lemma 7.1, if γ is a good point in V [G] for 〈gβ | β < µ〉
with cofinality τ with ω < τ < κ, then γ is a good point in V for 〈g∗β | β < µ〉. Finally,

the set of bad points S is still stationary in V [G].
�

We conclude with some questions.

Question 1. What can be said about the tree property at κ in the above construction?

Question 2. Can we use short extenders and collapses to obtain the present construction
for κ = ℵω?
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