THE FAILURE OF THE SINGULAR CARDINAL HYPOTHESIS AND
SCALES

DIMA SINAPOVA

ABSTRACT. Starting from a supercompact cardinal x, we build a model, in which x is
singular string limit, the singular cardinal hypothesis fails at x and there are no very
good scales at k. Moreover there is a bad scale at k, and so weak square fails.

1. INTRODUCTION

The Singular Cardinal Problem is the problem to find a complete set of rules for the
behavior of the operation x — 2% for singular cardinals x. One central theme is how
much “reflection-type” properties are consistent with the failure of the singular cardinal
hypothesis (SCH). SCH states that if & is singular and 2(%) < k. then (") = x*. In
particular, if  is strong limit singular, then 2% = ™.

Scales are a central concept in PCF theory. Given a singular cardinal £ = sup,, kn,
where each k, is regular, a scale of length k™ is a sequence of functions (f, | a < k™)
in [],, £n that is increasing and cofinal with respect to the eventual domination ordering.
A point a < k1 with cf(a) > w is good if there is an unbounded A C «a such that
{fs(n) | B € A} is strictly increasing for all large n. If A is a club in «, then « is very
good. A scale is good, resp. very good, if on a club every point of uncountable cofinality is
good, resp. very good. A scale is bad if it is not good.

Very good scales follow from intermediate square principles, and in turn imply failure
of simultaneous stationary reflection (Cummings-Foreman-Magidor, [2]). Thus the non
existence of a very good scale is a “reflection-type” property, and it has been open whether
it is consistent with the failure of SCH at a singular strong limit cardinal.

Extender based forcing, developed by Gitik and Magidor [5], violates SCH at a singular
cardinal xk while keeping GCH below . The set up is to start with a singular x, such that
K = sup,, kn, €ach K, is a strong cardinal, and then force to add many sequences though x,
but without adding bounded subsets at . In his Ph.D. thesis [7], Assaf Sharon modified
this forcing to construct a model, where SCH fails at x and there are no very good scales
at . In his model, however, bounded subsets of x are added, and « is no longer strong
limit. More precisely, only ko remains (regular) strong limit.

Another way to violate SCH is via Magidor’s supercompact Prikry forcings, [6]. An
important variation is Gitik-Sharon’s diagonal supercompact Prikry, [4]. In [8], we defined
a forcing notion, called hybrid Prikry, which combines the diagonal supercompact forcing
from Gitik-Sharon [4] and the original extender based forcing. This poset simultaneously
singularizes all cardinals in the interval [k, k), for a large cardinal k, and uses extenders
to add many Prikry sequences to [ [, &, so that SCH is violated. Here we define a modified
hybrid Prikry forcing, combining ideas from [8] and the modified extender based forcing
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from Assaf Sharon’s thesis, [7]. We use it to obtain the consistency of not SCH and no
very good scale at a singular strong limit.

Our main forcing does not add bounded subsets of x, thereby keeping it strong limit.
However, before the main forcing, we need some Laver type preparation, to achieve no
very good scales. Thus we can’t quite keep GCH below k, but we do have GCH at every
inaccessible a < k.

Theorem 1.1. Starting from a supercompact, it is consistent that SCH fails at a strong
limit k, and there is no very good scale at k.

In our forcing extension, there is also a bad scale:

Theorem 1.2. Starting from a supercompact, it is consistent that SCH fails at a strong

limit K, there is a bad scale at k and for all inaccessible cardinals o < K, 29 = a™.

The existence of a bad scale implies that weak square fails in our model. The failure of
SCH together with a bad scale was already achieved in [4] at Y 2. However, there is no
natural way to modify their forcing for X,. Our construction gives a different strategy,
leaving the possibility of pushing it down to X, open.

A key difference between the original extender based forcing and Assaf Sharon’s version
is that in the latter case forcing with the direct extension order preserves x*. Similarly,
starting from a supercompact k, we will define a Prikry type forcing (P, <, <*) with the
key feature that both (P, <) and (P, <*) preserve u, where p := (/#)VP.

In section 2 we define the forcing. Preservation of p is shown in section 3, and the
Prikry lemma is given in section 4. In section 5, we show that SCH fails in the generic
extension. Section 6 has the proof that there is no very good scale in the generic extension,
and in section 7 we define a bad scale.

2. THE FORCING

Suppose that GCH holds; let x be supercompact, and let (k, | n < w) be an increasing
sequence of strong cardinals above k. Denote k,, = sup,, kn, g := . For each n < w, let
U, be a normal measure on Py(ky), and let j, := jy, .

Suppose also that Ulty, E kn is jn(u™)-strong. So for a U,- measure one set of z’s in
Pu(kin), £ :=o.t.(x) is a uT - strong cardinal. Say this is witnessed by j, : V — M,.

Let © € Py(kn) be as above. Let (E,, | @ < put) be 7 complete ultrafilters on 7,
where Eyy = {Z C &} | a € jo(Z)}. Arguing as in [3] we define a strengthening of
the Rudin-Keisler order: for a,8 < pt, set a <g, B if a < f and there is a function
f Kk} — k2, such that j.(f)(8) = a. For a <g, B, fix projections 7, : K, — K} to

witness this ordering, setting 7, o to be the identity. We do this as in Section 2 of [3] with
respect to k7, so that we have:
(1) jomsalB) = .
(2) For all a C p* with |a] < k", there are unboundedly many 3 < p*, such that
a<p, fforall aca.
(3) Fora < <, if a <g, yand B <g, v, then {v <K} | 7a(V) < 7y 3(V)} € Eyy.
(4) If {o; | i < 7} C a < pt with 7 < &k, are such that for all i < 7, ; <pg, a,
then there is A € E,q,, such that for all v € A, for all 4,5 < 7, if oy <p, o, then
Wa,ai(l/) = Waj,ai(ﬁa,aj(’/))-



2.1. The modules.

Definition 2.1. The poset Q) = Q7y U Q41 is defined as follows:
no={fut = k2| |f] < K2} and <1 is the usual ordering. QY has conditions of the
form p = (a, A, f) such that:
e aCput, |a| <K?, forall B € a, B <g, max(a),
o f€Q, and andom(f) =10
L4 A e EZ' maxa
o foralla < B <g, vina, for allv € Thaxay" A, Ty,a(V) = 78,0(7y,5(V)).
o foralla < B in a, for allv € A, Tmaxa,a(V) < Tmaxa,s(V)

<baBag> <z0 <CL,A,f> Zf
(1) b D a,
(2) Tmaxbmaxa B C A,
(3)g>/f.

Define <i=<,0 U <z1 and forp,q € Q, p <, q, if p<i qorpe QY, ¢=(a, A, f) € QY
and

(1) pD f, a C dom(p)
(2) p(maxa) € A
(3) for all 5 € a, p(B) = Tmaxa,p(P(Mmaxa)).

Definition 2.2. For a condition p = (a,A,f) € Q) and v € A, let p"v = fU
{(B; Tmaxa,g(V)) | B € a}. Le. p~v is the weakest extension of p in QFy with v in its
range.

Note that if g € QF,, with g < p, there is a unique v € A such that g < p~v (take
v = g(maxa)).
Finally, for n < w, denote

Qo = [z = Qiolv,, Q1 = [ = Qilu,, and Q" = [z — Q¢lu,.

Since each Q7 is k}-closed, we have that Qf is kp-closed. Also, for each o = [z —
azlu, < jn(ut), set Eng = [#— Eza,]u,. Q" is the extender based module over &, with
respect to (Enq | @ < jn(1)) and Cohen parts of size less than or equal to k.

2.2. The main forcing. For z,y € P,.(k,), we will denote K, = kN x and use the
notation x < y to mean x C y and o.t.(z) < k,. Since on a measure one set, x, is an
inaccessible cardinal, we assume this is always the case. Similarly, for each k, on a measure
one set, for z € Py (ki), /1’; = o.t.(z) is strong. So we assume this is always the case, too.
Definition 2.3. Suppose we have sets A; € U;, B; € [x — Eyo,]u, where each ay € u™.
Let [[ 1,5, Ai X B;]<% denote the set of all finite sequences (%, V), where for some n,

(1) &= (my,...,xp), is such that each x; € A; and x; < Tj31 < ... < Ty,
(2) V= (v, ...,vp), is increasing and such that each v; € B,
(3) each v; € x;.

For every i, B; € [x — E.,]u,, and v € B; as above, fix representative functions
&+ Vg, such that v := [z — vy,
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Definition 2.4. Conditions in P are of the form

P = <.%'(), f07 ey 11, fl*l?Ah Ea Al+l7F1l+17 >
where | = 1h(p) and:
(1) Forn <, xy, € Px(kn), and fori <mn, x; < T,
(2) Forn>1, A, € Uy, and x;_1 <y for all y € A;.
(3) Forn > 1, dom(F,) = A, and fory € A,, Fy(y) = (an(y), An(v), fn(y)), where

an(y) € [M+]<HZ’ An(y) € E%max(an(y))'
Denote By, := [y — An(y)]u, -
(4) For n <1, dom(f,) = Pu(kn), for every x € Py(kp),

z): [[JAi x B n{(z.9) | v < 2} — Qp,

i>1

and fOT <2’ 17> - <Z7 ! ’ fn($)(<z »V
(5) Forn =1, Fu(y) = (an(y), An(
(a) dom(fn(y)) = [[lisp Ai x B~ N {<5,
dom(fn(y)),

<an(y)7 An(y)v fn(y)(<27 77>)> € QZOa

(b) if (£,7) C {17, FaW) (7)) < Jalw) (2. 7).
(6) Forl<n<m,y € Apn,y € A,y <y, we have an(y) C am(y')

For a condition p as above we will use f%, zh,n < lh(p) and A%, B, FY, FY (y) = (ab(y), AL (y), fh(y)),n
lh(p) to denote its components as defined above. Also for n > lh(p), let 8L = [z —
max(ah (z))]u, -
We say that ¢ <* p if lh(¢q) = lh(p) = [, and
(1) for all n < I, 27, = a}, and for n > 1, A} C AL,

(2) foralln > 1,y € A%, ai(y) D ah(y),m ) Ah(y) C AL(y).

max(af, (y),ah (y

For n >l and 7 € [], ;. By, denote m(v) = (mgq gr (vn), ey e g2 (V)
(3) for all n < I, Yy, x, for all (Z,7) € dom(fi(x)), fi(x)((Z,7)) <qn, fh(x)((Z,7(7))),
(4) for all n > 1, y € A} and (Z,7) € dom(f(y)),

(a5 (v), AL (), L (W) ((Z, 7)) <ay, (an (), AL (), f(y) (2, 7())))-
(5) for all n > I, A}, C {z | v € © — mga gr(v) € x}. This is needed to ensure
transitivity of <p.

Suppose p has length [, k > [, and (Z,7) € [[I;5; A} x BY|<%; Z = (21, .., xp-1), U =
(V) ..., vk—1). We define the weakest k — [-step extension of p obtained from (Z, ) denoted
by p™(Z, 7) to be the condition

(@0, for en @) 15 fits @1 f1s ooy Tm1, from15 Ak Floy A1, Flot1, -0)s
such that:

(1) forn >k, A, = AL 0 {y | zr—1 <y}, .

(2) forn <1, for & € Py(rn), and (2,8) € dom(fu()), fu(2)((2.9)) = fh(x)((F,7)(2.9)),
4
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(3) for | < n < k, for & € Px(ky) with v, € Ab (), for all (7,6} € dom(f,(z)),
fn(x)(<2>5>) = <a17?l(x)7A?V)L($)7fg(f)(<xn+17"'7*/1;]67171/71-‘!‘17' Vk‘ 1) <575>)> VJJ)
otherwise, if v, & Ab(z), for all (Z,0) € dom(f,(z)), set f(x)((Z,68)) = 0.
(4) for n > k and y € A,, we have F,(y) = F}(y).
We can finally define the full ordering:

Definition 2.5. ¢ < p if ¢ <* p or for some (§, V), we have that ¢ <* p™ (¥, V).
3. PRESERVATION OF

Define P,, := {p € P | lh(p) = n}. We will show that (Py, <*) preserves p. The idea
will be that for every n, we can regard it as a combination of two subposets, one with
ki T-c.c., and the other k,1i-closed. We use this to show that (Pg, <*) preserves r,, for
every n, and then conclude that it must preserve u. We remark that our arguments can
be adapted to show (P, <*) preserves p, for every k < w.

Definition 3.1. For p,q in Py, we say that p ~ q if for all k < w, BZ = BZ =
and there are measure one sets A C Ai N A,Z, such that for all k < w,x € Ay, (Z,
[T, Ai X Bi]<¥ with x < Z, we have that a} (x) = ak( z), AL (z) = Al(z), f£(z)((Z, 7))
[(x)((Z,7)). Define p <™ q if there is p' ~ p with p' < q.

Let Py | [n,w) := {(AR, FV,AY | FP.,,..) | p € Py} with the induced ordering from
<~ (which we denote the same). Note that (Py, <*) and (Py, <™) are isomorphic.

Proposition 3.2. (Py | [n,w), <") is ky-closed, for all n > 0.

Proof. Suppose that 7 < k, and (p, | n < 7) is a <~-decreasing sequence in Py [ [n,w).
For each n < ¢, let (AZ’5 | n < k < w) be measure one sets in Uy, respectively, witnessing
that p? <~ p'.

For k > n, set A} = AAT"‘S ={z [z € Nyerser
supremum of all of the domains of the fp"’s ie.

> sup dom(f" () (2, 7))).
n<7,k<w,z€AZ",<5’,ﬁ)€dom( 5”(93))

AZ"S}. Let m < u™ be above the

Inductively on k, for all x € A%, set

dw = dwu U dwuim,

nexnt n<m<kw€Ab, w<z

where m is a maximal element above m. Then let A} (z) = Myeanr ;1(Ap"( x)), where
=T

max(a} (z)) ,max(azn (z))"

)
Now let B, := [y — AY(y)]u,. For all (Z,7) € [[];o, AY x B]]<¥ with = < Z, define
@z = J R @E @),

nexnNT
where 7" is the corresponding pointwise projections from the maximal coordinates of p to
the maximal coordinates of p;,.
We claim that p is as desired. For if n < 7, for k > n, let Ay = A} N{z [nez}n{z|
ver — Wﬁzﬂin(u) € x}. Then (A | k > n) witness that p <~ p,,.
O
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For n > 0 and p € Py, let m,(p) = (A}, Fy, AV FP, . AP [ FP ). Set Po, := {mn(p) |
p € Py} with the natural induced ordering from <*.

Proposition 3.3. For alln >0, Py, has the st c.c.

Proof. By induction on n. Suppose for contradiction that {mn1(py) | 7 < KT} is an
antichain in Py, 1. By strengthening each p, if necessary, we may assume that the part
above n is the same, i.e. for all i > n, [Fip"]Ui = [Fi]y, for all n. For i > n, denote
[Filu, == (a}, B, f7), and let oy = max(a}). Then each B; € E;,,. For m > n, set
by 1= jjgnﬂ’%+1 O Jn+1© -JEm.ap, © Im-

Fix z € AP". We will define functions fﬁm for n < m as follows.

o Ifm =n+1,forv € By, let f] = [z 2 (@) (2, )] U - | (2)((2,0))] <
KTIBZ’ 50 |f;7,1/,n+1‘ < ’ig' Then let fg,nJrl = [V = g,u,nJrl]En-o—l,anJrl
that [f) | < Kl

e lfm=n+2forveB,,y¢c AZ’ZH, 0 € Bpio, with v € y, let,

B fg,l/,y,é = [Z = fﬁ"(m)((y,z,y, 5))]Un+2;
- fg,yyy = [6 = fa?,wy,&]En-Q—Q,anJrQ;

- fgvl/ = [y = fgvllzy:lUn+l;

- f.;z,n-‘rQ = [l/ = fgvV]En+1,an+l °

As before, |f | < kI
[

. Again, we have

Continue in a similar fashion for all m > n.

Then each fy!,, is a partial function from 4,,(u™") to k7 of size less than or equal to k.

Define a partial function Fy), : Py(kp) X im(put) = {Y} Uk by:
Y if a € ip(al(z

Frn(w, @) := { fam(a) ifae dOI(Il(fg(Z,m);

Let F" be the function given by F"(m,z,a) = Fy,(x,a). This is a function of size
less than «;}. So, by applying the A-system lemma, we get an unbounded I C k™,
such that (F" | n € I) forms a A system, and the functions have the same value on
the kernel. Note that this implies that for all 1,6 in I and for all n < m,x € Px(kn),
im(an’ (x)) N dom(f3 ) = 0.

By the inductive hypothesis, if n > 0, Py, has the /fzfl—c.c. So let n, ¢ be distinct points
in I, such that if n > 0, m,(py,) and m,(ps) are compatible. We will construct p € Py, such
that m,41(p) is a common extension of of m,41(p,) and m,1(ps)-

Let m < p' be above the supremum of the domains of f;"(x)(h) and f£°(z)(h), for
k<n,ze A" NAY hedom(f)"(z)) Ndom(fF(z)). Also, let r be a common extension
of m,(py) and m,(ps), such that for all k < n, z € A}, al(z) = a}"(z) U al’(x) U c, where
¢ C pt \ m. We will define p so that p [ n ~ r.

For i < n, set AY = A7, for v € AP, set a¥(z) = al(z), AV(x) = Al(x). And then
Bf = Bj.

Also set A, = A7 C AV N AP For x € A}, let

ab () = ap" () U ap? (x) U U  dwuimy,
i<n,weA? w<x
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where m’ > m is a maximal element in the extender ordering. Then, set
Ab () =mg (AR (2) N A (),

Tt m5(
where m,, ms are the maximal elements of a;,”(z) and ab? (z) respectively. Finally, for all
m > n, let

fl’,m = g,m U fg,m
This is a well-defined function because the values on the kernel of the A system obtained
above are the same.

Denote:
L4 fx,m = [V grz( )( )]En+1 an+17
o [(@)(w) =y~ (@) @) W)U,

o @) W)y) = [0 f () (v V)W) ()] Bty p05
o fil(@)(W)()(0) == [z = [ (@) (¥) () (0) ()], 123

e ... and so on until we reach m.
Then we have that:

*

* * * * *
vE7L+1,an+1 Vn+1vUn+1 yn+1vE7L+2 O 42 V”+2vUn+2 Yn+2-- ‘vEm,am vaUm Ym

() = (@) W) (Yng1) - (vm) (ym) =
fgn(x)«yn-i-l? sy Ymy Undly ey Vm>) U frpié (‘T)(<yn+17 cey Ymy Unt, -ooy Vm))
and
dom(f;" (%) Wn+1) (Ynt1)---(¥m) (ym)) N afy (z) = 0.

Then by taking diagonal intersection, for all z € Az” N A, for all m > n, we have

measure one sets A" AV LA™ and B, Bos, .., B, where each A7 € U,
B"™ € E; q,, such that for all <y, 7)€ [[Lheicm A7 x BY™]<% with 2 < ¢, we have that
the above equality holds.

We illustrate how these sets are defined for m = n + 2:
e By ={v | VY,V V" 2(}) holds for (y, z,v,0)}.
e For every v € B,11, let A, € Uy,y1 witness it.
Set Any1=AA, ={y |y €N, Av} € Unt1;
e Forall v € By y1, forally € Ay, let B,y € Epi2.4,,, Witness it.

Set B”+2 = ﬂl/,y Bl’:y € E”+27an+2;
e Forallve B,y1,y€ Ay,and d € By, let A, 5 € Uy, 2 witness it.

Set An+2 = AAV?:%(S = {Z | A ﬂ56z,y<z,V€y Ay,y,é} € Un+2;

For such z, for i > n, let
ﬂ Af:m’ Bgz _ m Bzc,m'
iI<m<w i<m<w
Then set A; = AAY, B} = (\,ep, (n) BY
Forn<i<w,let A" =A,N{z|vez— (mgp gon (V) € T, Wgp gos (V) € @)}
For i < n, let FF(y) be obtained from F (y), restricted to B’s.
For z € A, m > n, and (7, 7) in [[],5,, AY x BY]< with 2 < 7, let
SR @) (Ynt1s oo Yo Vng1s s vim) ) = F3 (2) Vi 1) Uneg1) - (Vi) (Ym)-
Then p is as desired.



Using a similar, and actually simpler argument, we get:
Lemma 3.4. Both (Py,<*) and (P, <) have the u*-c.c.
Lemma 3.5. Let n > 0. (Py, <*) preserves cardinals in the interval [k} ", kpi1].

Proof. Suppose otherwise. Let n be such that some regular V-cardinal 7 € [k}, k4] is
collapsed. Let p € Py, and A < 7 be such that p IFp, h: X — 7is onto. Fix o < \. We
will define 6 < k" and (p,, o, | 7 < 6) by induction of 7, such that:

(1) Py € Po,py <" p, ay €7,

(2) (py I [n+1,w) | n <) is <”-decreasing,

(3) py IFp, h(a) = ay).
Let ap and py <* p be such that pg IFp, h(oz) = ap. Suppose we have defined pg, ag,
for all € < n. If p = kfT, set & = n and stop. Otherwise let ¢ <* p be such that
gln+l=plin+landq|[n+1,w) <" pe|[n+1w)forall & <n Wecan find such a
condition because (Py | [n + 1,w), <™) is kp41-closed.

Suppose that there is r € Po,r <* g and 8 ¢ {a¢ | £ < n}, such that r I- hia) = B.

Then let o, = 3 and p, = r. Otherwise, set 0 = 1, g, := ¢, and stop.

Claim 3.6. 0 < k.

Proof. Otherwise (m,41(py) | 7 < k") is an antichain in Py, 41 of size s} ". Contradiction
with Proposition 3.3.
U

It follows that each g, is defined. Note that for all o, g, [ n+1 =p [ n+ 1. Let
Xo = {ay | n < 0}. Then g, IF h(a) € X,. Doing this inductively on a < A, we arrange
that (¢o [ [0+ 1,w) | @ < k) is <™-decreasing. Finally let X = J,., Xo, and let ¢ <* p
be such that forall « < A\, ¢ [ [n+1,w) <¥ ¢4 [ [n+1,w) and ¢ [n+1=p [ n+1. Then

q IFp, ran(h) C X, but |X| < 7. Contradiction. O
Corollary 3.7. Py preserves p.

For conditions p, g € P, we say that p and g are tail equivalent, if for some large enough
n,p | [n,w) ~ q | [nw), as defined earlier, restricted to P | [n,w). In this case we write
p ~¢ q. Denote the tail-equivalence class of p, by t(p) := {q | p ~¢ q}.

Definition 3.8. Let D := {t(p) | p € P} with the ordering t(p) <p t(q) if for some n,
plnw) <~ ql[nw).

By considering the map p — t(p), we get the following:
Proposition 3.9. Both P and Py project to D.

Proposition 3.10. Suppose that H is D-generic, Gg is Py/H-generic, and p € P/H.
Then there is some n, such that 17p | [n,w) € Gy.

Lemma 3.11. Let H be D-generic. P/H has the p-c.c.

Proof. Suppose {p, | n < p} are conditions in P/H. lLe. for each n, t(p,) € H. By passing
to an unbounded subset of u, we may assume that there is n < w, and ¥ of length 7, such
that all conditions have length 7 and Prikry stem #. Let Gy be Py/H-generic. Then for
all n, there is some n, > 7, such that 17 p, | [n,,w) € Go.
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Since in V[Gy], p is a regular cardinal, there is some unbounded I C p, such that for
all n € I, n, = n. Now run a A-system argument for {p, [ n | n € I} in V[Go]. This
is similar (and actually simpler) to what was done in Proposition 3.3. Then we can find
n < 0, in I, such that p, [ n,ps [ n have a common extension in P | n. Let r be such
an extension, and let ¢ € P [ [n,w) be a common extension of p, [ [n,w) and ps [ [n,w).

Then ¢ is a common extension of py, ps.
O

Corollary 3.12. P preserves p.

4. THE PRIKRY LEMMA
First we show the diagonal lemma:

Lemma 4.1. Suppose that p is a condition of length | and for all (z,v) € Af’ X Blp with
v €z, we have py, <* p~(x,v). Suppose also that:

(1) There are (B, | 1 < n < w), such that every Bn™" <g, Bn, and for all y € Al for
all h, with y < h,

(P () (1)) 1 dom (7" (u)(x* (W) \ 6} (9) | v € 2, < )

are pairwise compatible, where " is the projection from the B, ’s to the 5" ’s.

(2) (Pap [ I+ 1,w)) are <~ -pairwise compatible.
Then there is a direct extension ¢ <* p, such that if r is a nondirect extension of q, then

for some z,v, we have that r < p,,. Moreover, we can choose q, so that for all x € A},
af (x) = af ().

Proof. For simplicity assume that lh(p) = 1. Denote p,, = (o, fo", @, [, A37, FyY, L),
and for n > 1, F,""(y) = (an"”(y), Av"(y), fn""(y)). By taking diagonal intersections,
by item (2), we can assume that for all n > 1, for all v € z,6 € w, for all y € A}
with © < y,z < y and for all h with y < h, (a®°(y), A2’ (), " (y)(m1(h))) and
{an” (y), AR (y), fn"" (y)(ma(h))) are pairwise compatible, where 71 and 7 project to the
maximal coordinates of p% and p®V, respectively, from some coordinate above both.

For every v, we have that B, := {x € A} | v, € AY(z)} € U;. Set A} = A,B,. For
y € Af, set af(y) = di(y),A{(y) = AY(y). For n > 1, let A, = ANAYY = {z | z €
Nexzwer An”}. For n>1and y € A7, set:

(1) an(y) O Up<yeq an” (y), and

(2) A%(y) = m:p<y,y€x Fmix(a%(y)),max(zzfl’”(y))”Aﬁ, (y)
This is possible since there is a maximal element for the a’s unboundedly often. And by
choosing the af’s inductively for n, we maintain the last item of 2.4. Then, for n > 1, let
Aj=A, 0 {z|ver —mg gr(v) €z}
For every (z,v) and h € [[],o; A7 x B{""|<%, let m4,p(h) be the corresponding pointwise
projection of h from the maximal coordinates of p, , to p. Let 7y, (h) be the projection
from the maximal coordinates of ¢ to p;,, and let 7, ,(h) be the projection from the
maximal coordinates of ¢ to p.

Since every py,, < p, let Ay € Up be such that for all y € AyY, for all h € [[],.; A" x
BY]<% with y < h, fi""(y)(h) < fE(x,v) " mpup(h)). For all y € Py(ko), and = € Af,
v € Bl = BY with v € z, set f{(y)((z,v)) = f§(y)((z,v)), and
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o ify € Ay, set f3(y)((z,v)"h) = fo" (Tqww(h)),
o otherwise, set fg(y)((z,v)"h) = f§(y)((z,v) " mgp(h)).
For all y € A, for each h with y < h, set

Ay = U @) (rges ) | dom(f™ (y) (e (h) \ i (y).

T, Vvex,r<y

Then set FY (y) = (af(y), AT (y), f{ (v))-
Forn > 1andy € A}, set fi(y)(h) = Ux<y,l/€m n" (Y)(mgp(h)) and Fi(y) = (an(y), A%(y), fi(y))-

Then q is as desired.

0

Corollary 4.2. Suppose that p is a condition, D is an open dense set, and n > lh(p).
Then there is a condition ¢ <* p such that for all v < q with length n, if there is v’ <* r
in D, then r is in D.

Proof. By induction on n—1. If n = lh(p)+ 1, the result follows from the Diagonal lemma.
Suppose n > lh(p) + 1. For every (z,v), such that p~(z,v) is defined, by the inductive
assumption let p,, <* p~(z,v) be such that for all r < p,, with length n, if there is
r’ <*rin D, then r is in D.

Defining these condition inductively, we arrange that they satisfy the assumptions of
the diagonal lemma. Apply the diagonal lemma to the conditions p, , and p to get ¢ <* p,
such that ¢~ (x,v) <* pg,, for all z,v. Then g is as desired. For if r < ¢ is with length n,
let z,v be such that r < p,,. Now, if 7/ <* r is in D, then by the way we chose p; ., it
follows that r is in D.

O

Remark 1. We can define ¢ as above so that for all | <k < n and z € A}, af(z) = o} ().
That is because when running the argument above, by induction, we may assume that
for all I < k < n, for all z,v and y € AZ””’, aix’” (y) = af(y). Then, as in the proof of
the Diagonal lemma, when diagonalizing over the p; ,’s we get that for all [ < k <n and
z € AL, af(x) = df(z).

Lemma 4.3. (Prikry lemma) Suppose that D is an open dense set and p is a condition
with length l. Then there is some n and q <* p, such that for all Z,U of length n, such
that ¢~ (&, V) is defined, we have that ¢~ (Z,V) € D.

Proof. First by shrinking measure one sets, we may assume that for some fixed n, for all
r < p of length n + [, there is some 7/ <* r such that " € D. Let ¢ <* p be given by the
above corollary applied to D. Then every n-step extension of ¢ is in D.

O
Lemma 4.4. For every p € P and formula ¢, there is ¢ <* p, such that q decides ¢.

Proof. Apply the Prikry lemma for the set {q | ¢ || ¢} to find p’ < p and n, such that every
n-step extension of p’ is in D’. Then by shrinking measure one sets, in a rather standard
way, we obtain ¢ <* p/, such that all n-step extensions of ¢ decide ¢ the same way. Then
q decides ¢.

O

Corollary 4.5. P does not add bounded subsets of k
10



Proof. This follows from the Prikry property and since (P, <*) is k-closed. O

Corollary 4.6. P preserves cardinals up to and including .

5. THE GENERIC EXTENSION

Prepare the ground model V', such that the supercompactness of k is preserved by
forcing with Py. Since Py is kg-closed, and so does not add subsets of k, by starting with
a model of GCH, we have that in V', 27 = 7 for all inaccessible 7 < k. Also, in V, GCH>,,
holds.

Let G be P-generic. Let (z, | n < w) be the diagonal supercompact Prikry sequence
added by G. Then |, xn = Ky, and V[G] | (Vi < w)cf(k;) = w and p = k1. Next we
show that the forcing blows up the powerset of k.

Lemma 5.1. Suppose n < w,a < u™, and p is such that n > 1h(p) and for ally € A}, a €

an(y). Then Dy o := {q | 1h(q) > n, (38 := [z — B]u,)(Vu,x)(Vh € dom(fh(x))) fH(z)(h)(a)

Bz} is dense below p.
Proof. Let ¢ < p and 1h(q) > n. Say g <* p™ (&, V), and let v is the n — lh(p) - th element
of the sequence #. Then let 8 := T4, max(a? ()], ,jn(a) (V). Denote 8 = [z — B;]u,. Then
by definition of the Q-modules, we have that for U,-almost all z, for all h € dom(fi(z)),
fﬂb(x)(h‘)(a) = o = Tmax(ab (x),0) (Vw)

g

For p in D,, o, define gh(a) = 3, where 8 witnesses that p is in that set. Let

F= U 2.
peGn>1h(p)yeAf
Note that by genericity of the Prikry sequence and definition of PP, this is the same as
taking F' = U eq n>in(p) @n(@n). Define gy + F' — kn by gp(a) = gn(a) for some p in
G N Dy, q, if such exists, and 0 otherwise.

Lemma 5.2. F is unbounded in u*

Proof. Let o < pt. We claim that the set Dy, := {p | (3¢ > «)(3i > 1h(p))(Vy € AV)a/ €
a?(y)} is dense. Let p be given. Since:

By := sup dom(fE(y)(h)) < u™,
n>1h(p),y€ AL ,hedom(fE (y))

we have that 8 := max(8y, a) < u™. Take o/ with 8 < o/ < u™. Now we can extend p to
a condition ¢, so that for some n > lh(q), for all y € A}, we have that o’ € af(y) O

Remark 2. By a similar argument, we get that F' N p is unbounded in p.
Lemma 5.3. If a < 8 are both in F, then for all large n, g} (a) < g (5).

Proof. Let p1,p2 in G witness that o, 8 € F. We can find a common extension p € G,
such that for all n > lh(p), for all y € AL, {«a, 8} C ah(y). We will show that for all
n > lh(p), gi(a) < gi(B). To this end, let ¢ € G be such that ¢ < p and lh(q) > n.
Let ¢ <* p™(Z,7), and let v is the n — lh(p) - th element of the sequence . Then let
0 1= Maymax(a® (2))]u, jn (@) (V) A0 6" 1= T smax(a?(2)))u, ju(3) (V). Then by definition of
the Q-modules, we have that for U,-almost all z, for all h € dom(fi(x)), fi(x)(h)(a) =

0g < 0y, = fii()(R)(B). So, gy (@) =0 < &' = g, (B).
11



O

We have that every gy has range k,. Next we use the genericity of (z, | n < w) to
define functions with ranges in s7 := |z,|. Now, for all 1, let F} be the function such
that [F/]y, = n. In V[G], define functions (t, | @ < ) in [], &7 by

ta(n) = F9n@) (z,).
Then (t, | @ € F) are increasing sequences in [],, 7 mod finite.

Corollary 5.4. V|G| E 2¢ = put.
6. NO VERY GOOD SCALE

In this section we show that there is no very good scale at x in V[G]. Suppose for
contradiction, that in V[G], (fo | @ < p) is a very good scale in some product [[,, 7, of
regular cardinals with supremum k. For every n there is some n/, such that 7, < Kz, ;-
Suppose for simplicity that n’ = n. The general case is similar. Also suppose for simplicity
that all of this is forced by the empty condition.

Proposition 6.1. For all a < p and p € Py, there is ¢ <* p, such that every n + 1-step
extension of q decides a value of fo(n), and such that for allk < n,z € A}, al(x) = a}(z).

Proof. Let D := {q | Iv(q IF fa(n) = v)}; this is clearly a dense open set. Then by
Corollary 4.2, we get g <* p such that for all r < ¢ with length n + 1, if there is v/ <* r
in D, then r is in D.

Claim 6.2. For all v < p with Ih(r) =n+ 1, there is ' <* r with ' € D.

Proof. Fix such r; say x := z],. Then r IF fa(n) < Kg. Apply the Prikry property to
“fa(n) =77, for all v < kg, to construct a <*-decreasing sequence (r., | v < k) of direct
extensions of 7, deciding these formulas. Then let 7’ be stronger than each r.; r’ € D.

O
It follows that every r < ¢ with length n + 1 is in D. Also, by Remark 1, for all
k<n,xe A}, al(z) =d(x). O

Remark 3. Since (P, <*) is ko-closed, the above proposition also works for functions in
whia s I, ks TL(s5 )T, ete. (recall Kl = |z for € Py(kn))

n "Tn’ T
Now let H be D-generic induced from G, and let Gy be Py/H-generic over V. Since
P/H has the p-chain condition there is a club subset of p, E € V[H], such that every
point in E is very good, and of course E remains a club in V[Gy].
For two functions f, g, we will write f <,, g to denote that for all & > n, f(k) < g(k).

Lemma 6.3. In V[Gy), there isn <w, and a < k-club C C p, such that for all a < 3 in
C, there is p € Go, such that plFp fo < f3.

Proof. For every § < p with w < cf¥(8) = cfVI%(6) < &, let Y5 € V be any club in § of
order type cfV(5). Enumerate PV (Ys) by {Cs; | i < 2@}, Since & is strong limit, we
have that 2°f(0) < k. So, by applying the Prikry property, we can produce a condition ps
of length 0, such that for each 4, and n < w, ps decides whether Cs; and n witness very
goodness of §. By density, we choose each ps € Gg. By assumption, for club many 4’s

there is some 7,n such that Cs; and n witness very goodness.
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Let j : V[Go] — M be a p-supercompact embedding with critical point k. Set p :=
sup j” . Then by elementarity, there is a condition p* € j(Gp), n < w, and C* € M of
order type cf (p) = p, such that p* forces that C* n witness that p is very good. Let
Ci={y<upljly)eC}

Then C'is < r club in p. Now suppose that < f are in C' and ¢ € Go. Let
r* <* j(q),p* be in j(Go). Then r* Ijpy j(f)j) <n J(f)js) (since p* forces it). So, by
elementarity, there is a condition p € Gy, p <* ¢, such that p IFp fa <n fg.

O

Let C be a Py name for a club as above and suppose that the empty condition forces
(over Pg) that C,n are as above. Le. for all p € Py, and o < 8 < i, if p IFp, 0, 8 € C,
then there is ¢ <* p, such that ¢ IFp fo <, f3.

Lemma 6.4. For all T < K, and p € Py, there is X C p in V with | X| =7 and r <* p,
such that r IFp, X C C.

Proof. Let m be such that 7 < k,,,. We use the following claim.

Claim 6.5. For all a < p, for all p, there is f > o and q¢ <* p, such that Tm(q) = ™m(p)
and qlp, B € C.

Proof. Construct <*-decreasing sequence of conditions (gx | ¥ < w) and an increasing
sequence of points (ay | k¥ < w), such that ag = «, every g IFp, cn (o, agey1] # 0,
and 7,,,(qr) = Tm(p). We can do this by standard arguments since P, has the ' -
cc. and P | [m,w) is ky,-closed. Then let § = sup, ai and let ¢ <* g for all k. Then
qlFp, BeC. O

Fix p. We will construct a sequence (3, | n < 7) and (g, | n < 7), such that for each 7,
Tm (@) = mm(p) and (g, [ [m,w) | n < 7) is <~-decreasing.

Suppose we have defined the sequences up to n. Let ¢ <* p be such that 7,,(q) = mn(p)
and ¢ [ [m,w) <% ¢ [ [m,w) for all £ < n. Let g, <* q, By > sup,., B¢ be given by the
claim applied to ¢ and supg S¢.

Finally let » <* p be such that 7, (r) = my(p) and r [ [m,w) <™ ¢, | [m,w) for all

n<t.StX={B,|n<7} Thenrlrp, X C C. O

Apply the above lemma to find a condition r € Py and X C pu of size x,F, such that
rlkp, X C C. For every a € X, let p, <* r be given by Proposition 6.1. Le. every
q < po with length n + 1 decides fo(n), and for all k < n,z € AL aP*(z) = a}(z).
P | [n+ 1,w) is kpy1-closed and |X| = s+, So by defining the p,’s inductively, we
arrange that (po [ [n+ 1,w) | @ € X) is <~-decreasing.

Consider {m,11(pa) | @ € X} C Popt1. By the same A-system argument as in Propo-
sition 3.3, there is an unbounded X’ C X, such that {m,+1(pa) | @ € X'} are pairwise
compatible. But that means {p, | « € X'} are pairwise compatible with respect to <*.
For all o, f in X', let po 3 <* pa,pp be such that p, 5 IFp fa <n fg. Let ro.3 < pa,p be
of length n + 1 and of the form 7,3 = pgﬁ@?, V), for some Z, 7. But then since for all
k<n,z e Al, ai*(x) = a}(x), we have that there are Z, g, 7, g, such that:

® 1o, <" Py (Ta,8, Va,8)

* 70,8 <" pg (Za,8, Va,B)
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Denote hy g := (a3, Va,p). The number of possible hy g’s is Ky, and | X'| = w1 = (26) T,
By Erdos-Rado, the function (o, ) — hapg has a homogenous set Y is size k. Let
(@, V) = hqp forall o, fin Y.

For all « € Y, let 7, < k be such that, p_ (Z, V) IF fa(n) = Y. (Here we use that p, is as
in the conclusion of Proposition 6.1.) Suppose that a < ( are both in Y. Since 74,8 < pa,s
and pq g IF f‘a <n fg, we have that r, g IF fa(n) < fg(n) But rqg <* py (4, D’>,pg‘(f, v),
S0 Yo < V8-

But then {7, | @ € Y} is a subset of k of size ;. Contradiction.

7. BAD SCALE

Recall that we prepared the ground model V', so that the supercompactness of k is
preserved by forcing with Py. In V, fix a scale (g} | v < p) € V in [, k. Set S :={y <
| w < cf(y) < K, is a bad point for (g} | v < u)}. By standard reflection arguments
S is stationary in V. Also, since Py preserves u and is £t-closed, (g% | v < p) remains a
bad scale after forcing with Py. More precisely, if Gy is Pg-generic, a point of cofinality
less than & is bad in V iff it is bad in V[Gy], and the set S is stationary in V[Gp] (since &
remains supercompact in V[Gp).

So if H is D-generic, since Py projects to D, we have that S is stationary in V[H|. Then
by the u-chain condition of P/D), S is stationary after forcing with P.

The next lemma will be used to show that a witness of goodness in the generic extension
gives rise to a witness of goodness in the ground model. In particular, if a point is bad in
V, then it is bad in V[G].

Lemma 7.1. Let 7 < k be a reqular uncountable cardinal in V' (and so in V[G]), and
suppose V|G] = A C ON,o0.t.(A) = 7. Then there is a B € V such that B is an unbounded
subset of A.

Proof. Let p € G, p I+ h : 7 — A enumerate A. By the Prikry lemma, define a <*-
decreasing sequence (p, | @ < 7), such for every a < 7, po, <* p and there is n, < w,
such that every q < p, with length n, decides h(a). Then there is an unbounded I C 7
and n < w such that for all « € I, n = n,. Let p’ be stronger than all p, for @ < 7. By
appealing to density, we may assume that p’ € G. Let ¢ < p be a condition in G with
length n, and set B = {v | (3a € I)q - h(a) = }. Then B is as desired.

O

Note that the above lemma already implies that the approachability property fails in
V]G], and so weak square also fails.

Recall that for every x € Px(ky), k7 denotes |z|, which is a cardinal on a U,-measure
one set. Also, Vn < w, Vn < k7, we fixed F; : Py(k,) — V, such that [F/]y, =n. We

n?o

may assume that Vo Fy/(z) < (k)*. Define in V[G], (g | 8 < p) in [],, (k7 )T by:

95(n)
gs(n) = F”" " (wn)
To show that this is a scale we need the following bounding lemma.
Lemma 7.2. Suppose that in V[G], h € [], (k7 )*. Then there is a sequence of functions
(Hy | n < w) in V, such that dom(H,,) = Px(kn), Hn(z) < (k2)F for all z, and for all
large n, h(n) < Hy(xy).
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Proof. Let p force that h € [1,(x% )*. For simplicity, say Ih(p) = 0.

Fix n < w. Let p, <* p be such that every n + 1-step extension decides h(n) Let
q <* pp, for all n. For all 2, 7 of length n+1, such that ¢~ (Z, V) is defined, let vz 7 be such
that ¢~ (2, 7) IF h(n) = vz For z € A%, v € B} with v € x, define H,(z,v) = sup{vz»
Zn = X,vp = v} < K, where z, and v, denote the last elements of Z and U/ respectively.
Let Hy(x) = sup,epe ep Ha(,v) < (KT,

Then g forces that (H, | n < w) is as desired.

Corollary 7.3. (g3 | 8 < ) is a bad scale in V[G]

Proof. (g5 | B < p) is a scale by the way we defined it and Lemma 7.2, (see for example
the arguments in [1]). Also, by Lemma 7.1, if v is a good point in V[G] for (g5 | B < p)
with cofinality 7 with w < 7 < k, then 7 is a good point in V for <gE | 6 < p). Finally,
the set of bad points S is still stationary in V[G].

]

We conclude with some questions.
Question 1. What can be said about the tree property at k in the above construction?

Question 2. Can we use short extenders and collapses to obtain the present construction
for k =N, ?
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